EXT2文件系统实现原理

目录

一    EXT2文件系统结构概览    2

1.1 EXT2文件系统结构框图    2

1.2 EXT2重要数据结构    3

二    块缓存    6

三    EXT2文件系统挂载    7

3.1 注册ext2文件系统类型    7

3.2 ext2文件系统挂载    7

3.3文件系统操作    9

EXT2文件系统结构概览

1.1 EXT2文件系统结构框图

EXT2文件系统实现原理_第1张图片

每一个文件或者目录在磁盘上都有一个inode用于管理文件本身属性信息,还有数据块用于存放文件内容。其inode'和数据块关系如下图:

 EXT2文件系统实现原理_第2张图片

 

如果文件比较小,其数据块少于12个,其数据块索引就放在inode->i_blocks中,如果文件比较大,操作12个数据块就需要分配间接块来保存数据块索引

EXT2文件系统实现原理_第3张图片 

1.2 EXT2重要数据结构

super_block是VFS中的标准结构,通过成员s_fs_info与特定文件系统相连

 

truct super_block

struct list_head s_list

用于将超级块挂到全局链表super_blocks中

dev_t s_dev

文件系统所在设备的设备号

unsigned long s_blocksize

文件系统块大小

struct file_system_type *s_type

文件系统类型,比如ext2_fs_type

const struct super_operations *s_op

服装inode的分配inode元数据的同步等等

struct dentry *s_root

文件系统根目录的dentry

struct block_device *s_bdev

文件系统所在块设备对应的block_device

struct hlist_node s_instances

用于挂到链表file_system_type ->fs_supers

void *s_fs_info

指向保存特定文件系统的结构,比如ext2_sb_info

struct list_head s_inodes

文件系统所有打开文件的inode链表

……

…… 


结构体ext2_sb_info包含特定文件系统的所有信息,包含超级块,组描述符等等:


struct ext2_sb_info

unsigned long s_inodes_per_block

每个block中可以存放多少个inode描述符

unsigned long s_blocks_per_group

每个块组中包含的数据块数

unsigned long s_inodes_per_group

每个块组中包含的inode数

unsigned long s_itb_per_group

一个块组中用于存放inode的块数

unsigned long s_gdb_count

用于存放组描述符的块数

unsigned long s_desc_per_block

一个块存放组描述符的的数量

unsigned long s_groups_count

组描述符的数量

struct buffer_head * s_sbh

指向存放原始超级块的缓存

struct ext2_super_block * s_es

指向 s_sbh中的超级块结构

struct buffer_head ** s_group_desc

读取超级块的时候也会将组描述符读入内存

int s_first_ino

文件系统中第一个非保留的inode号

struct rb_root s_rsv_window_root

预留窗口的红黑树

struct ext2_reserve_window_node s_rsv_window_head

红黑树的第一个节点

……

…… 

 

ext2_super_block保存在磁盘上的原始超级块

 

struct ext2_super_block

__le32 s_inodes_count

文件系统中Inode的数量

__le32 s_blocks_count

文件系统中块数

__le32 s_r_blocks_count

保留的块数

__le32 s_free_blocks_count

空闲的块数

__le32 s_free_inodes_count

空闲的inode数

__le32 s_first_data_block

第一个数据块号

__le32 s_log_block_size

块大小

__le32 s_blocks_per_group

每个块组的块数

__le32 s_inodes_per_group

每个块组的inode数

__le32 s_first_ino

第一个没有保留的inode

__le16 s_inode_size

Inode结构体的大小

__le16 s_block_group_nr

当前 ext2_super_block所在块组编号,超级块在磁盘中每个块组中都有备份

……

…… 

 

结构体ext2_inode_info链接VFS inode和原始inode


struct ext2_inode_info

__le32 i_data[15];

Inode的直接块

__u32 i_block_group;

Inode所属的块组

struct inode vfs_inode;

VFS inode

……

…… 

 

结构体ext2_inode是存放于磁盘上的原始inode


struct ext2_inode

__le16 i_mode

文件模式,

__le32 i_size

文件大小(bytes)

__le32 i_blocks

文件大小(块)

__le32 i_block[EXT2_N_BLOCKS]

直接索引块

……

…… 

结构体ext2_dir_entry_2也是磁盘上的一个结构,它表示目录下面的一个目录项。也就是目录的内容(子目录或者文件),目录也有一个inode,它也有数据块,其数据块上的存放的每一项都是用ext2_dir_entry_2来表示,例如:

chenying@chenying:~/workspace/kernel_4.12/linux-4.12.3/mm$ ls ~/workspace/

1496324869gf_common.h androidJ6 aosp dumpe2fs.txt gf_common.h kernel_4.12 log readme

 

struct ext2_dir_entry_2

__le32 inode

这个目录项对应的inode编号

__le16 rec_len

rec_len字段的末尾到下一个 rec_len的偏移,方便在数据块上查找下一个目录项

__u8 name_len

目录项名的长度

__u8 file_type

文件类型,目录、普通文件、管道、链接等等

char name[]

目录项名字

……

…… 


ex2_group_desc结构用于描述一个块组,所有块组描述符集中存放于磁盘上特定的几个块,文件系统挂载的时候就会将所有组描述符读入内存。

struct ext2_group_desc

__le32 bg_block_bitmap

数据块位图的块号

__le32 bg_inode_bitmap

Inode位图的块号

__le32 bg_inode_table

Inode表的块号

__le16 bg_free_blocks_count

块组中空闲块的数量

__le16 bg_free_inodes_count

块组中空闲inode的数量

__le16 bg_used_dirs_count

块组中目录的数量

……

…… 

 

用命令dumpe2fs可以dump出文件系统的信息:

 

chenying@chenying:~/workspace/kernel_4.12/linux-4.12.3/fs$ sudo dumpe2fs -h /dev/sda1

dumpe2fs 1.43.3 (04-Sep-2016)

Filesystem volume name:

Last mounted on: /

Filesystem UUID: 22af4caf-a05b-4d8f-8004-30d531867b55

Filesystem magic number: 0xEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal ext_attr resize_inode dir_index filetype needs_recovery extent 64bit flex_bg sparse_super large_file huge_file dir_nlink extra_isize metadata_csum

Filesystem flags: signed_directory_hash

Default mount options: user_xattr acl

Filesystem state: clean

Errors behavior: Continue

Filesystem OS type: Linux

Inode count: 16252928

Block count: 65011456

Reserved block count: 3250572

Free blocks: 23809796

Free inodes: 14213383

First block: 0

Block size: 4096

Fragment size: 4096

Group descriptor size: 64

Reserved GDT blocks: 1024

Blocks per group: 32768

Fragments per group: 32768

Inodes per group: 8192

Inode blocks per group: 512

Flex block group size: 16

Filesystem created: Fri Feb 17 21:00:51 2017

Last mount time: Sat Aug 12 10:26:31 2017

Last write time: Sat Aug 12 10:26:26 2017

Mount count: 32

块缓存

 

在深入ext2实现逻辑之前我们先插一节块缓存,下面先看快缓存结构:

 

struct buffer_head

unsigned long b_state

缓存状态位图,例如 BH_Mapped关联到磁盘块; BH_Dirty:脏块; BH_Uptodate:块中数据可用等

struct buffer_head *b_this_page

缓冲区环形链表

struct page *b_page

缓冲区映射到的页

sector_t b_blocknr

对应到磁盘上的块号

size_t b_size

缓存大小

char *b_data

缓存起始地址

struct block_device *b_bdev

块设备,指定了数据的来源

……

…… 

 

EXT2文件系统实现原理_第4张图片

块缓存主要用在两个地方,页缓存和块设备原始数据读取(独立块缓存),例如超级块,组描述符块等等。在页缓存中块缓存依附于页,页释放之后块缓存就释放。独立块缓存由一个lru缓存来管理,这个时候页依附于块缓存,块缓存释放页就释放。

struct bh_lru {
struct buffer_head *bhs[BH_LRU_SIZE];
};

这两种块缓存都是用下面函数创建,他们的不同在于管理的视角不同。

struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
int retry)

EXT2文件系统挂载

3.1 注册ext2文件系统类型

静态定义EXT2文件系统类型ext2_fs_type,并通过register_filesystem将其添加到全局链表file_systems上


static struct file_system_type ext2_fs_type = {
    .owner      = THIS_MODULE,
    .name       = "ext2",
    .mount      = ext2_mount,
    .kill_sb    = kill_block_super,
    .fs_flags   = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("ext2");


static int __init init_ext2_fs(void)
{
    int err;


    err = init_inodecache();
    if (err)
        return err;
        err = register_filesystem(&ext2_fs_type);//将ext2_fs_type挂到全局链表file_systems上
    if (err)
        goto out;
    return 0;
out:
    destroy_inodecache();
    return err;
}

3.2 ext2文件系统挂载

 EXT2文件系统实现原理_第5张图片


blkdev_get_by_path:根据dev_name从bdev文件系统中获取块设备对应的block_device

sget:分配super_block并且将super_block添加到全局链表super_blocks和file_system_type ->fs_supers

fill_super:函数指针,这里指向ext2_fill_super,用于从文件系统中读取super_block,下面细讲:


static int ext2_fill_super(struct super_block *sb, void *data, int silent)
{
    struct buffer_head * bh;
    struct ext2_sb_info * sbi;
    struct ext2_super_block * es;
    struct inode *root;
    unsigned long sb_block = get_sb_block(&data);
    unsigned long logic_sb_block;
    unsigned long offset = 0;
    int blocksize = BLOCK_SIZE;
    int db_count;


    sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); //分配ext2_sb_info结构
    if (!sbi)
        goto failed;


    sb->s_fs_info = sbi; //VFS中的super_block通过sb->s_fs_info与ext2_sb_info相连接
    sbi->s_sb_block = sb_block;


    blocksize = sb_min_blocksize(sb, BLOCK_SIZE);
    ......
    if (!(bh = sb_bread(sb, logic_sb_block))) { //从磁盘中读取原始的超级块结构ext2_super_block
        ext2_msg(sb, KERN_ERR, "error: unable to read superblock");
        goto failed_sbi;
    }
    es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
    sbi->s_es = es;
    ......
    sb->s_magic = le16_to_cpu(es->s_magic);
    blocksize = BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);


/*如果超级块的实际块大小与假设的大小不一致就重新读取超级块,因为超级块占用一个块大小,函数sb_bread也是从指定块号读取一个块大小,如果实际块与假设的块大小不一致就重新读取一个准确的块
大小*/
    if (sb->s_blocksize != blocksize) { 
        brelse(bh);


        if (!sb_set_blocksize(sb, blocksize)) {
            ext2_msg(sb, KERN_ERR,
                "error: bad blocksize %d", blocksize);
            goto failed_sbi;
        }
        logic_sb_block = (sb_block*BLOCK_SIZE) / blocksize;
        offset = (sb_block*BLOCK_SIZE) % blocksize;
        bh = sb_bread(sb, logic_sb_block);
        es = (struct ext2_super_block *) (((char *)bh->b_data) + offset);
        sbi->s_es = es;
    }
    ......
    sbi->s_frags_per_block = sb->s_blocksize / sbi->s_frag_size;


    sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
    sbi->s_frags_per_group = le32_to_cpu(es->s_frags_per_group);
    sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);


    sbi->s_inodes_per_block = sb->s_blocksize / EXT2_INODE_SIZE(sb);
    sbi->s_itb_per_group = sbi->s_inodes_per_group /
                    sbi->s_inodes_per_block;
    sbi->s_desc_per_block = sb->s_blocksize /
                    sizeof (struct ext2_group_desc);
    sbi->s_sbh = bh; //让s_sbh指向原始超级块数据
    sbi->s_mount_state = le16_to_cpu(es->s_state);
    sbi->s_addr_per_block_bits =
        ilog2 (EXT2_ADDR_PER_BLOCK(sb));
    sbi->s_desc_per_block_bits =
        ilog2 (EXT2_DESC_PER_BLOCK(sb));
    ......
    sbi->s_groups_count = ((le32_to_cpu(es->s_blocks_count) -
                le32_to_cpu(es->s_first_data_block) - 1)
                    / EXT2_BLOCKS_PER_GROUP(sb)) + 1;
    db_count = (sbi->s_groups_count + EXT2_DESC_PER_BLOCK(sb) - 1) /
           EXT2_DESC_PER_BLOCK(sb);
    sbi->s_group_desc = kmalloc (db_count * sizeof (struct buffer_head *), GFP_KERNEL);
    ......
    for (i = 0; i < db_count; i++) { //读出所有组描述符
        block = descriptor_loc(sb, logic_sb_block, i);
        sbi->s_group_desc[i] = sb_bread(sb, block);
        if (!sbi->s_group_desc[i]) {
            for (j = 0; j < i; j++)
                brelse (sbi->s_group_desc[j]);
            ext2_msg(sb, KERN_ERR,
                "error: unable to read group descriptors");
            goto failed_mount_group_desc;
        }
    }
    sbi->s_gdb_count = db_count; //设置组描述符所占用的块数
......
/*初始化预分配窗口*/
    sbi->s_rsv_window_head.rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
    sbi->s_rsv_window_head.rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
    sbi->s_rsv_window_head.rsv_alloc_hit = 0;
    sbi->s_rsv_window_head.rsv_goal_size = 0;
    ext2_rsv_window_add(sb, &sbi->s_rsv_window_head);
	......
sb->s_op = &ext2_sops; //设置super_operations
	......
    root = ext2_iget(sb, EXT2_ROOT_INO); 
    if (IS_ERR(root)) {
        ret = PTR_ERR(root);
        goto failed_mount3;
    }


    sb->s_root = d_make_root(root); //创建根目录的dentry


    ......
    ext2_write_super(sb);
    ......

3.3文件系统操作

 EXT2文件系统实现原理_第6张图片

例如:read--->vfs_read--->__vfs_read---> ext2_file_read_iter("file->f_op->read_iter")---> generic_file_read_iter---> do_generic_file_read---> ext2_readpage("mapping->a_ops->readpage")

inode包含了文件操作的全部信息,文件打开时候的file结构初始化信息页都是来源于inode,下面是inode创建时的主要逻辑:

 

struct inode *ext2_iget (struct super_block *sb, unsigned long ino)
{   
    struct ext2_inode_info *ei;
    struct buffer_head * bh;
    struct ext2_inode *raw_inode;
    struct inode *inode;
    
    inode = iget_locked(sb, ino); //创建VFS inode和ext2_inode_info
    
    ei = EXT2_I(inode);
    ei->i_block_alloc_info = NULL;
    
    raw_inode = ext2_get_inode(inode->i_sb, ino, &bh); //到inode块表中去读取原始inode


    ......


    if (S_ISREG(inode->i_mode)) {
        inode->i_op = &ext2_file_inode_operations;
        if (test_opt(inode->i_sb, NOBH)) {
            inode->i_mapping->a_ops = &ext2_nobh_aops;
            inode->i_fop = &ext2_file_operations;
        } else {
            inode->i_mapping->a_ops = &ext2_aops;  //页缓存操作函数集
            inode->i_fop = &ext2_file_operations;  //设置file_operations
        }
    } else if (S_ISDIR(inode->i_mode)) {
        inode->i_op = &ext2_dir_inode_operations;
    ......
}

文件数据读取

EXT2文件系统实现原理_第7张图片

具体代码实现如下 :
int  mpage_readpages(struct address_space *mapping, struct list_head *pages,
                unsigned nr_pages, get_block_t get_block)
{
	……
    for (page_idx = 0; page_idx < nr_pages; page_idx++) {
        struct page *page = lru_to_page(pages);

        prefetchw(&page->flags);
        list_del(&page->lru);
        if (!add_to_page_cache_lru(page, mapping, page->index, gfp)) { //循环映射多个页到文件系统数据块
            bio = do_mpage_readpage(bio, page,
                    nr_pages - page_idx,
                    &last_block_in_bio, &map_bh,
                    &first_logical_block,
                    get_block, gfp);
        }
        put_page(page);
    }
    if (bio)
        mpage_bio_submit(REQ_OP_READ, 0, bio); //提交数据读请求给块设备
    return 0;
}

文件数据块分散在磁盘上,要对数据进行读写操作就先要找到文件数据块的块号,函数do_mpage_readpage的工作就是根据文件数据位置偏移找到对应的数据块块号。map_bh用于读取inode的映射块。

static struct bio *
do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
        sector_t *last_block_in_bio, struct buffer_head *map_bh,
        unsigned long *first_logical_block, get_block_t get_block,
        gfp_t gfp)
{
    struct inode *inode = page->mapping->host;
    const unsigned blkbits = inode->i_blkbits;
    const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
    const unsigned blocksize = 1 << blkbits;
    unsigned first_hole = blocks_per_page;
        ......
    block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
    last_block = block_in_file + nr_pages * blocks_per_page;
    last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
    if (last_block > last_block_in_file)
        last_block = last_block_in_file;
    page_block = 0;

    nblocks = map_bh->b_size >> blkbits;
    if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
            block_in_file < (*first_logical_block + nblocks)) { //如果前一次循环已经读取了映射块,就在其中查找映射关系
        unsigned map_offset = block_in_file - *first_logical_block;
        unsigned last = nblocks - map_offset;

        for (relative_block = 0; ; relative_block++) {
            if (relative_block == last) {
                clear_buffer_mapped(map_bh);
                break;
            }
            if (page_block == blocks_per_page)
                break;
            blocks[page_block] = map_bh->b_blocknr + map_offset +
                        relative_block;
            page_block++;
            block_in_file++;
        }
        bdev = map_bh->b_bdev;
    }
    map_bh->b_page = page;
    while (page_block < blocks_per_page) { //调用函数get_block读取映射块,这个函数后面详解
        map_bh->b_state = 0;
        map_bh->b_size = 0;

        if (block_in_file < last_block) {
            map_bh->b_size = (last_block-block_in_file) << blkbits;
            if (get_block(inode, block_in_file, map_bh, 0))
                goto confused;
            *first_logical_block = block_in_file;
        }
        ......
        nblocks = map_bh->b_size >> blkbits;
        for (relative_block = 0; ; relative_block++) {
            if (relative_block == nblocks) {
                clear_buffer_mapped(map_bh);
                break;
            } else if (page_block == blocks_per_page)
                break;
            blocks[page_block] = map_bh->b_blocknr+relative_block;
            page_block++;
            block_in_file++;
        }
        bdev = map_bh->b_bdev;
    }
        ......
alloc_new:
    if (bio == NULL) {
        if (first_hole == blocks_per_page) {
            if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
                                page))
                goto out;
        }
        bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 
                min_t(int, nr_pages, BIO_MAX_PAGES), gfp); //根据前面找到的数据块编号初始化bio
        if (bio == NULL)
            goto confused;
    }

    length = first_hole << blkbits;
    if (bio_add_page(bio, page, length, 0) < length) { //将内存页添加到bio中
        bio = mpage_bio_submit(REQ_OP_READ, 0, bio);
        goto alloc_new;
    }

        ......
out:
    return bio;
        ......
块映射

前面提到的函数指针get_block指向函数ext2_get_block,其实现逻辑如下:

 EXT2文件系统实现原理_第8张图片

ext2_block_to_path: 找到文件偏移位置在映射块中的位置
ext2_get_branch :检查将要读写的所有数据块是否都有映射(即在映射块中是否都有值)

如果不是所有数据块都有映射就继续调用下面几个函数分配数据块:
ext2_find_goal:返回查找空闲块的起始位置 
ext2_blks_to_allocate:计算将要分配的块数包含可能需要的间接块
ext2_alloc_branch:分配前面计算的块数,然后映射相关的数据块(即将块号写入映射块)

块分配

块分配是由函数ext2_new_blocks来实现的,该函数中包含一个叫做预分配的逻辑,在讲解这个函数之前我们先认识下预分配相关的数据结构:

struct ext2_sb_info {
    .......
    spinlock_t s_rsv_window_lock;
    struct rb_root s_rsv_window_root; //预分配窗口的红黑树
    struct ext2_reserve_window_node s_rsv_window_head;//红黑树的根节点,空窗口
    .......
};


struct ext2_inode_info {
    ...... 
    struct ext2_block_alloc_info *i_block_alloc_info; //预分配信息结构
    ......
};

struct ext2_block_alloc_info 

struct ext2_reserve_window_node rsv_window_node; 

预留窗口信息

__u32 last_alloc_logical_block; 

上一次分配的逻辑块,即相对文件偏移的块

ext2_fsblk_t last_alloc_physical_block; 

逻辑块,即磁盘上的块号


struct ext2_reserve_window_node 

struct rb_node rsv_node 

用于添加到ext2_sb_info的红黑树中

__u32 rsv_goal_size 

预分配的大小

 

struct ext2_reserve_window rsv_window 

struct ext2_reserve_window {

ext2_fsblk_t _rsv_start; //预分配的起始位置

ext2_fsblk_t _rsv_end;//预分配的结束位置

}; 

inode预分配窗口的初始化:

void ext2_init_block_alloc_info(struct inode *inode)
{
    struct ext2_inode_info *ei = EXT2_I(inode);
    struct ext2_block_alloc_info *block_i;
    struct super_block *sb = inode->i_sb;


    block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
    if (block_i) {
        struct ext2_reserve_window_node *rsv = &block_i->rsv_window_node;


        rsv->rsv_start = EXT2_RESERVE_WINDOW_NOT_ALLOCATED;
        rsv->rsv_end = EXT2_RESERVE_WINDOW_NOT_ALLOCATED; //标识预分配窗口为空


        if (!test_opt(sb, RESERVATION))
            rsv->rsv_goal_size = 0;
        else
            rsv->rsv_goal_size = EXT2_DEFAULT_RESERVE_BLOCKS; //默认预分配窗口大小为8
        rsv->rsv_alloc_hit = 0;
        block_i->last_alloc_logical_block = 0;
        block_i->last_alloc_physical_block = 0;
    }
    ei->i_block_alloc_info = block_i;
}

下面正式讲解块的分配:

ext2_fsblk_t ext2_new_blocks(struct inode *inode, ext2_fsblk_t goal,
            unsigned long *count, int *errp)
{
        ......
    struct ext2_super_block *es;
    struct ext2_sb_info *sbi;
    struct ext2_reserve_window_node *my_rsv = NULL;
    struct ext2_block_alloc_info *block_i;
    unsigned short windowsz = 0;
    unsigned long ngroups;
    unsigned long num = *count;


    sb = inode->i_sb;




    sbi = EXT2_SB(sb);


    block_i = EXT2_I(inode)->i_block_alloc_info;
    if (block_i) {
        windowsz = block_i->rsv_window_node.rsv_goal_size;
        if (windowsz > 0)
            my_rsv = &block_i->rsv_window_node;
    }


    group_no = (goal - le32_to_cpu(es->s_first_data_block)) /
            EXT2_BLOCKS_PER_GROUP(sb);  // 计算goal所在的块组
    goal_group = group_no;
retry_alloc:
    gdp = ext2_get_group_desc(sb, group_no, &gdp_bh); //获取组描述符
    if (!gdp)
        goto io_error;


    free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);


    if (free_blocks > 0) {
        grp_target_blk = ((goal - le32_to_cpu(es->s_first_data_block)) %
                EXT2_BLOCKS_PER_GROUP(sb));
        bitmap_bh = read_block_bitmap(sb, group_no); //读取块组数据块位图
        if (!bitmap_bh)
            goto io_error;
        grp_alloc_blk = ext2_try_to_allocate_with_rsv(sb, group_no,
                    bitmap_bh, grp_target_blk,
                    my_rsv, &num); //分配数据块,并实现数据块预分配
        if (grp_alloc_blk >= 0)
            goto allocated;
    }


    ngroups = EXT2_SB(sb)->s_groups_count;


    for (bgi = 0; bgi < ngroups; bgi++) { //如果在goal所在的块组中没有分配到就从第一个块组开始尝试分配
        ......
}
    if (my_rsv) {
        my_rsv = NULL;
        windowsz = 0;
        group_no = goal_group;
        goto retry_alloc;
    }


allocated:
    ret_block = grp_alloc_blk + ext2_group_first_block_no(sb, group_no);
        ......
    return ret_block; //返回分配到的块组的块号
        ......

下面函数是块分配的核心函数,首先查找一个可以容纳预分配窗口大小的空闲空间,然后将数据块位图上对应的位置设置为1,表示已分配。

static ext2_grpblk_t
ext2_try_to_allocate_with_rsv(struct super_block *sb, unsigned int group,
            struct buffer_head *bitmap_bh, ext2_grpblk_t grp_goal,
            struct ext2_reserve_window_node * my_rsv,
            unsigned long *count)
{
    ext2_fsblk_t group_first_block, group_last_block;
    ext2_grpblk_t ret = 0;
unsigned long num = *count;

    if (my_rsv == NULL) { //直接分配数据块不做预分配
        return ext2_try_to_allocate(sb, group, bitmap_bh,
                        grp_goal, count, NULL);
}

    group_first_block = ext2_group_first_block_no(sb, group);
    group_last_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);

    while (1) {
        if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
            !goal_in_my_reservation(&my_rsv->rsv_window,
                        grp_goal, group, sb)) {//预分配窗口为空或者目标块不在my_rsv中
            if (my_rsv->rsv_goal_size < *count) // my_rsv->rsv_goal_size初始值为8
                my_rsv->rsv_goal_size = *count; 
            ret = alloc_new_reservation(my_rsv, grp_goal, sb,
                            group, bitmap_bh); //查找一个可以容纳预分配窗口大小的空闲空间
            if (ret < 0)
                break;          /* failed */

            if (!goal_in_my_reservation(&my_rsv->rsv_window,
                            grp_goal, group, sb))
                grp_goal = -1; 
        } else if (grp_goal >= 0) {
            int curr = my_rsv->rsv_end -
                    (grp_goal + group_first_block) + 1;

            if (curr < *count)
                try_to_extend_reservation(my_rsv, sb,
                            *count - curr);
        }

        if ((my_rsv->rsv_start > group_last_block) ||
                (my_rsv->rsv_end < group_first_block)) {
            rsv_window_dump(&EXT2_SB(sb)->s_rsv_window_root, 1);
            BUG();
        }
        ret = ext2_try_to_allocate(sb, group, bitmap_bh, grp_goal,
                       &num, &my_rsv->rsv_window);// 将预分配窗口中的数据块在位图上对应的位置设置为1
        if (ret >= 0) {
            my_rsv->rsv_alloc_hit += num; //统计预分配命中数
            *count = num;   
            break;              /* succeed */
        }
        num = *count;   //返回分配到的块数
    }
    return ret;
}

下面函数是预分配的核心:

static int alloc_new_reservation(struct ext2_reserve_window_node *my_rsv,
        ext2_grpblk_t grp_goal, struct super_block *sb,
        unsigned int group, struct buffer_head *bitmap_bh)
{   
    struct ext2_reserve_window_node *search_head;
    ext2_fsblk_t group_first_block, group_end_block, start_block;
    ext2_grpblk_t first_free_block;
    struct rb_root *fs_rsv_root = &EXT2_SB(sb)->s_rsv_window_root;
    unsigned long size;
    int ret;
    spinlock_t *rsv_lock = &EXT2_SB(sb)->s_rsv_window_lock;

    group_first_block = ext2_group_first_block_no(sb, group);
    group_end_block = group_first_block + (EXT2_BLOCKS_PER_GROUP(sb) - 1);

        start_block = grp_goal + group_first_block; //搜索空间区间的起始位置

    size = my_rsv->rsv_goal_size;

    search_head = search_reserve_window(fs_rsv_root, start_block); //查找离start_block最近的预留窗口

retry:
    ret = find_next_reservable_window(search_head, my_rsv, sb,
                        start_block, group_end_block); //以search_head为起点查找一个可以容纳my_rsv且不与其他预留窗口重叠的空闲区间
    ......
    first_free_block = bitmap_search_next_usable_block(
            my_rsv->rsv_start - group_first_block,
            bitmap_bh, group_end_block - group_first_block + 1); //在位表中查找块组中rsv_start往后第一个空闲块,因为不是所有块分配都是通过预分配,所以有些块可能已经分配了但是在预留窗口中找不到

    ......
    start_block = first_free_block + group_first_block;

    if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)//空闲块是否在my_rsv中
        return 0;       /* success */
    search_head = my_rsv; //如果my_rsv区间中的块都被分配出去了就以my_rsv为起点重新搜索
    goto retry;
}

你可能感兴趣的:(EXT2文件系统实现原理)