python实现二叉树构建遍历(递归和非递归遍历)

注:本博客参考了牛客网视频解法

对二叉树进行广度优先遍历,且进行逐层打印
请用递归和非递归的方式分别实现二叉树的先中后序遍历打印

构建二叉树

构建 node 类

class Node(object):
    def __init__(self,item):
        self.item = item
        self.left = None
        self.right = None

构建树

class Tree(object):
    def __init__(self):
        self.head = None

实现添加元素

    def add(self,item):
        node = Node(item)
        if self.head == None:
            self.head = node
            return
        queuen = [self.head]
        while queuen:
            a = queuen.pop(0)
            if a.left == None:
                a.left = node
                return
            else:
                queuen.append(a.left)
            if a.right == None:
                a.right = node
                return
            else:
                queuen.append(a.right)

广度优先遍历

不进行换行

def travel(self):
    queuen = [self.head]
    while queuen:
        a = queuen.pop(0)
        print(a.item)
        if a.left != None:
            queuen.append(a.left)
        if a.right !=None:
            queuen.append(a.right)

逐层打印

应用queue里的数据是一层一层存储的,可通过计数进行控制
可设置计数装置进行深度统计

def layer1(self):
    out_list = []
    queue = [self.head]
    count = 0
    while queue:
        res = []
        i = 0
        number = len(queue)
        while i < number:
            cur = queue.pop(0)
            res.append(cur.item)
            if cur.left != None:
                queue.append(cur.left)
            if cur.right != None:
                queue.append(cur.right)
            i += 1
        count +=1
        print(res)
        out_list.append(res)
    print(count)
    return out_list

设置新的List进行逐层存储然后将每一层分别赋值给原先的层即可
可设置计数装置进行深度统计

def layer2(self):
    queue = [self.head]
    out_list = []
    while queue:
        new_queue = []
        res = []
        num = len(queue)
        i = 0
        while i < num:
            cur = queue.pop(0)
            res.append(cur.item)
            if cur.left != None:
                new_queue.append(cur.left)
            if cur.right != None:
                new_queue.append(cur.right)
            i +=1
        queue = new_queue
        print(res)
        out_list.append(res)
    return out_list

先序遍历

递归

def pre_travel(self,node):
	if self.head == None:
		return
	print(node.item,end=" “)
	self.pre_travel(node.left)
	self.pre_travel(node.right)

非递归: 通过设置栈先将右节点压入再将左节点压入,再弹出遍历

def pre_travel2(self,node):
    stack = [node]
    while len(stack) > 0:
        cur = stack.pop()
        print(cur.item,end=" ")
        if cur.right != None:
            stack.append(cur.right)
        if cur.left != None:
            stack.append(cur.left)

中序遍历

递归

def mid_travel(self,node):
	if self.node == None:
		return
	self.mid_travel(node.left)
	print(node.item,end=" ")
	self.mid_travel(node.right)

非递归:通过设置栈先将左节点压入栈直到左节点为空,再弹出栈顶,打印当前元素,并将当前节点的右孩子赋值给cur,依次循环。

def mid_travel2(self,node):
    stack = []
    cur = node
    if cur == None :
        return
    while len(stack)>0 or cur!=None :
        while cur != None:
            stack.append(cur)
            cur = cur.left
        if  len(stack)>0:
            a1 = stack.pop()
            cur = a1.right
            print(a1.item,end=" ")

后序遍历

递归

def last_travel(self,node):
	if node == None:
		return
	self.last_travel(node.left)
	self.last_travel(node.right)
	print(node.item,end=" ")

非递归:用两个栈 s2 存储遍历的元素

def last_travel2(self,node):
    s1 = []
    s2 = []
    s1 = [node]
    while len(s1)>0:
        cur = s1.pop()
        s2.append(cur.item)
        if cur.left != None:
            s1.append(cur.left)
        if cur.right != None:
            s1.append(cur.right)
    while len(s2)>0 :
        print(s2.pop(),end=" ")

平衡二叉树(AVL树)

  • 空树是平衡二叉树

  • 如果一颗树不为空,并且其中所有的子树都满足各自的左子树与右子树的高度差都不超过1.

      输入一棵二叉树,判断该二叉树是否是平衡二叉树。
    
  • 获取左右子树的深度

  • 左右的深度相减,若差值大于一则返回False

  • 对所有节点进行递归判断。

判断树的深度

def get_deepth(self,node):
    if node == None:
        return 0
    nright = self.get_deepth(node.right)
    nleft = self.get_deepth(node.left)
    return max(nright,nleft)+1

判断是否是平衡二叉树

def isbalance(self,node):
    if node == None:
        return True
    right = self.get_deepth(node.right)
    left = self.get_deepth(node.left)
    if abs(right-left) >1:
        return False
    a = self.isbalance(node.right)
    b = self.isbalance(node.left)
    return a and b

搜索二叉树

  • 每个子树的头结点的值都比各自的左子树上的所有节点的值大,也比各自右子树上的所有节点的值要小。

  • 搜索二叉树按照中序遍历得到的序列一定是从小到大排列的。

  • 红黑树、平衡搜索二叉树(AVL树)等,其实都是搜索二叉树的不同实现。都力争使搜索的效率尽量提高,调整的代价减小。

      给定一颗二叉树的头结点,判断这棵树是否是搜索二叉树   
    

    改写中序遍历,判断后一个值一定比上一个值大

     def is_search_tree(self,node):
          stack = []
          res = []
          cur = node
          if cur == None:
              return True
          while len(stack) > 0 or cur != None:
              while cur != None:
                  stack.append(cur)
                  cur = cur.left
              if len(stack) > 0:
                  a1 = stack.pop()
                  cur = a1.right
                  if len(res) == 0:
                      pass
                  else:
                      if a1.item < res[-1]:
                          return False
                  res.append(a1.item)
          return True
    

你可能感兴趣的:(算法)