- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- Python实战:自动在知乎回答点赞并采集内容的高阶爬虫教程
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言okhttp学习
✨写在前面:为什么做知乎自动化操作?知乎作为中国领先的知识问答平台,拥有大量结构化内容。对于研究舆情分析、情绪识别、用户画像,甚至产品舆情反馈采集的用户来说,如何自动获取知乎内容并进行交互行为(如点赞、回答),是一个非常实用的能力。本文将手把手带你用Python完成以下目标:✅自动登录知乎✅自动搜索某个关键词下的热门问题✅自动点赞高质量回答✅自动采集回答内容(文本、点赞数、评论数等)✅自动保存为本
- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- 企业级知识库私有化部署:腾讯混元+云容器服务TKE实战
大熊计算机
#腾讯云语言模型
1.背景需求分析在金融、医疗等数据敏感行业,企业需要构建完全自主可控的知识库系统。本文以某证券机构智能投研系统为原型,演示如何基于腾讯混元大模型与TKE容器服务实现:千亿级参数模型的私有化部署金融领域垂直场景微调高并发低延迟推理服务全链路安全合规方案1.1典型技术挑战#性能基准测试数据(单位:QPS)|场景|裸机部署|容器化部署|优化后||--------------------|--------
- OPC/MQTT工业通信软件OPLink
牛宝柱
OPLink是上海泗博自主研发的基于OPC数据采集及转发,OPC数据到MQTT通信的产品。它是基于上海泗博多年的OPC应用经验和工业通信产品的开发背景,推出的OPC/MQTT工业通信软件。软件设计简洁、实用、稳定。同时,OPLink还具备与KepwareLinkMaster相似的数据转发功能,可实现PLC设备间的自主数据通信。功能升级实时性增强:针对复杂的工业自动化环境,OPLink优化了数据传输
- SnowConvert:自动化数据迁移的技术解析与最佳实践
weixin_30777913
迁移学习数据库运维
SnowConvert是Snowflake生态系统的关键迁移工具,专为将传统数据仓库(如Oracle、Teradata、SQLServer等)的代码资产高效、准确地转换为Snowflake原生语法而设计。以下基于官方文档对其技术原理、工作流程及最佳实践进行深入分析:一、SnowConvert核心技术解析精准的语法映射引擎语言支持:深度解析源系统特有语法(OraclePL/SQL,TeradataB
- 前端用MQTT协议通信的场景和好处
CreatorRay
前端网络面试前端MQTT网络协议物联网
上家公司中前端项目有用MQTT协议和硬件通信的场景,虽然很早就听说过MQTT协议,但是这是第一次在前端项目里基于MQTT协议做网络通信。当时没了解太多,工作中只做好了代码层面的工作,并没有深入了解MQTT协议的好处和适合的应用场景。在前端项目中,应该99%的情况都会基于HTTP和WebSocket来进行网络通信,使用MQTT在前端里确实比较小众。目前可能只会在物联网项目中,需要跟硬件通信的前提下,
- AIRIOT物联网低代码平台如何配置MQTT驱动?
AIRIOT
网络服务器物联网
MQTT驱动配置简介MQTT全称为消息队列遥测传输(英语:MessageQueuingTelemetryTransport),是ISO标准(ISO/IECPRF20922)下基于发布(Publish)/订阅(Subscribe)范式的消息协议,工作在TCP/IP协议族上。MQTT最大优点在于,可以用极少的数据和有限的带宽,为连接远程设备提供实时可靠的消息服务。作为一种低开销、低带宽占用的即时通讯协
- 疲劳检测与行为分析:工厂智能化实践
智驱力人工智能
安全智慧城市行为识别人员属性识别疲劳检测抽烟检测徘徊检测
视觉分析算法赋能工厂疲劳与安全管理一、背景与需求在制造业中,疲劳作业是导致安全事故和效率下降的核心因素之一。传统人工巡检存在覆盖面不足、响应滞后等问题,而基于视觉分析的智能监控系统通过多算法协同,可实现全天候、高精度的疲劳检测与行为管理。本文围绕疲劳检测算法、人员计数算法、抽烟检测算法及徘徊检测算法,探讨其在工厂场景中的技术实现与应用价值。二、技术实现疲劳检测算法原理:基于PERCLOS(眼睑闭合
- GPT-4o重磅升级!只需一条指令,教你秒出SCI级专业科研图!
智写AI
AI学术写作指南信息可视化人工智能
经过数月爆肝,七哥终于完成专业的学术AI使用教程,估计也有个80万字的详细操作指南。分为多个细分的专业写作场景,跟着一步一步操作,借助ChatGPT做学术、干科研、写论文、课题申报都变得超简单。欢迎加我交流(yida985),祝你一臂之力。七哥之前写过关于用AI生成流程图的教程,不过需要借助其他软件才能搞定完美的流程图。近期GPT-4o全新推出了“生图功能”,这个生图的过程就更加方便轻松了,全能G
- 【基于ESP32-S3的Modbus RTU单双精度浮点数验证方案】
2345VOR
#Arduino小项目开发工业通讯esp32s3ModBusRTU浮点数
基于ESP32-S3的ModbusRTU单双精度浮点数验证方案一、核心功能升级在工业自动化场景中,单纯的整型数据已无法满足高精度测量需求。本文在原有ADC数据采集方案基础上,通过ModbusRTU协议扩展实现以下功能升级:新增1路16位浮点数(3.3V量程)新增1路32位双精度浮点数(±2.5V量程)保持原有4通道ADC数据传输本方案在原有ADC数据采集基础上,重点实现单双精度浮点数(float&
- Spring AI Alibaba 支持国产大模型的Spring ai框架
程序员老陈头
面试学习路线阿里巴巴spring人工智能java
总计30万奖金,SpringAIAlibaba应用框架挑战赛开赛点此了解SpringAI:java做ai应用的最好选择过去,Java在AI应用开发方面缺乏一个高效且易于集成的框架,这限制了开发者快速构建和部署智能应用程序的能力。SpringAI正是为解决这一问题而生,它提供了一套统一的接口,使得AI功能能够以一种标准化的方式被集成到现有的Java项目中。此外,SpringAI与原有的Spring生
- 技术调研:时序数据库(一)
myskybeyond
时序数据库时序数据库数据库
选择时序数据库时,选择当下主流的解决方案。目前主流的开源解决方案有InfluxDB、TDengine和TimescaleDB。下文从多个维度对比分析,最终根据需求做出选型决策。1.核心架构与设计理念数据库架构特点核心优势InfluxDB-专为时序数据设计的分布式数据库-基于时间线(TimeSeries)模型-开源版(OSS)与商业版(Cloud/Enterprise)功能差异大高写入吞吐量、原生支
- 高可用与低成本兼得:全面解析 TDengine 时序数据库双活与双副本
TDengine (老段)
TDengine案例分析时序数据库tdengine大数据涛思数据数据库物联网iot
在现代数据管理中,企业对于可靠性、可用性和成本的平衡有着多样化的需求。为此,TDengine在3.3.0.0版本中推出了两种不同的企业级解决方案:双活方案和基于仲裁者的双副本方案,以满足不同应用场景下的特殊需求。本文将详细探讨这两种方案的适用场景、技术特点及其最佳实践,让大家深入了解这两大方案如何帮助企业在高效可靠的数据存储和管理中取得成功。TDengine双副本(+仲裁者)为了满足部分客户在保证
- 基于摩尔线程 S80 显卡在 Ubuntu 系统下双卡交火部署 DeepSeek
流量留
Deepseek人工智能
以下是基于摩尔线程S80显卡在Ubuntu系统下双卡交火部署DeepSeek的详细教程:###一、环境准备1.**操作系统**:推荐使用Ubuntu22.04。2.**显卡驱动**:-访问摩尔线程官网,登录账号后进入产品页面,找到软件部分下载MUSASDK。-安装显卡驱动,确保驱动版本与MUSASDK兼容。3.**安装Ollama**:-官方推荐使用命令安装Ollama,但下载速度可能较慢,可前往
- 【linux】yum工具篇
nanguochenchuan
Linux操作系统linux运维服务器
Yum工具概述Yum(YellowdogUpdaterModified)是RedHat系列Linux发行版(如CentOS、Fedora)中最核心的软件包管理工具,它基于RPM包管理系统构建,通过自动解决依赖关系极大简化了软件管理流程。与直接使用rpm命令相比,Yum能自动处理软件包依赖,让系统管理员从"依赖地狱"中解脱出来。Yum工作原理深度解析Yum的工作流程可分为四个关键阶段:仓库配置读取:
- 智力题——5L的桶和3L的桶如何装4L的水
酒醉梦醒
算法数据结构java5升水和3升水图论bfs状态压缩
文章目录智力题——5L的桶和3L的桶如何装4L的水问题描述直观分析问题建模问题解决智力题——5L的桶和3L的桶如何装4L的水问题描述有一个5L的桶A和一个3L的桶B以及无限量的水,如何让5L的桶装4L的水。支持操作:加水,倒水,A倒入B,B倒入A,除此之外不再支持其他操作,例如做记号或者借助其他工具直观分析直观分析就是利用我们的直观思维在草纸上不停的模拟这些操作,这个很不好说,对于简单问题你可能可
- Sonatype Nexus3安装配置及使用
無法複制
nexus
1、简介SonatypeNexusRepositoryManager是一款强大的仓库管理工具,用于存储、管理和发布软件组件。它能够支持多种格式的仓库,如Maven、npm、Docker等。在企业开发中,私有Maven仓库常用于存储自定义依赖和发布组件,确保代码安全性和内部共享。本文将从服务器环境搭建、Nexus安装与配置、仓库创建、依赖上传,再到Maven项目中使用私有仓库的全过程,帮助你掌握如何
- webpack和vite对比解析(AI)
秉承初心
AI创造webpack前端node.js
以下是Webpack和Vite的对比解析,从核心机制、性能、配置扩展性、适用场景等维度进行详细说明:⚙️一、核心机制差异构建模式Webpack:采用打包器模式,启动时需遍历整个模块依赖图,将所有资源打包成Bundle,再启动开发服务器。Vite:基于ESModules原生支持,开发环境跳过打包,按需编译(浏览器请求时实时编译)。生产环境才用Rollup打包。依赖处理Webpack:冷启动时需全量打
- 将图片的base64编码直接嵌入到html文件的css中
Kuo-Teng
软件开发实战htmlcssjavascript
将图片的base64编码直接嵌入到html文件的css中1.背景2.将图片进行base64编码3.将图片的base64编码写入到css1.背景如果你需要在html中引入一张外部图片,你可能会这样做:如果你将引用的图片保存到本地,你可能会这样做:但是,如果网络延迟较高,或者在jar包中运行Java项目时无法根据路径顺利找到图片呢?那么,将图片的base64编码直接写入html文件便是最好的选择!2.
- 什么是Node.js,有什么特点
前端与小赵
node.js
Node.js简介Node.js是一个基于ChromeV8引擎的JavaScript运行时环境,由RyanDahl于2009年创建。Node.js允许开发者使用JavaScript编写服务器端应用程序,打破了JavaScript仅限于浏览器端的限制。Node.js的设计目标是提供一种简单、高效的方式来构建可伸缩的网络应用。Node.js的特点非阻塞I/O特点:Node.js使用事件驱动的非阻塞I/
- Web3解读:解锁去中心化网络的潜力
清 晨
反侦测指纹浏览器社交媒体web3去中心化区块链tiktokfacebookinstagramClonBrowser
随着互联网技术的飞速发展,我们正在进入一个新的时代——Web3。Web3不仅仅是一个技术概念,它代表了一种全新的网络架构和价值交换方式。本文将深入探讨Web3的核心理念,以及它如何解锁去中心化网络的潜力。什么是Web3?Web3是一个基于区块链技术的去中心化网络,它旨在提供一个更加开放、透明和安全的互联网环境。与传统的Web2相比,Web3强调用户对数据的控制权,以及数据的不可篡改性。在Web3中
- Node.js特训专栏-实战进阶:8. Express RESTful API设计规范与实现
爱分享的程序员
Node.jsjavascriptnode.js前端
欢迎来到Node.js实战专栏!在这里,每一行代码都是解锁高性能应用的钥匙,让我们一起开启Node.js的奇妙开发之旅!Node.js特训专栏主页专栏内容规划详情ExpressRESTfulAPI设计规范与实现:构建标准化、可维护的接口服务在前后端分离架构盛行的今天,RESTfulAPI已成为Web服务交互的事实标准。基于Express框架构建RESTfulAPI,既能利用Node.js的高效性能
- 高斯混合模型GMM&K均值(十三-1)——K均值是高斯混合模型的特例
phoenix@Capricornus
模式识别与机器学习均值算法机器学习算法
EM算法与K均值算法的关系K均值可以看成是高斯混合模型的特例。对K均值算法与EM算法进行比较后,可以发现它们之间有很大的相似性。K均值算法将数据点硬(hard)分配到聚类中,每个数据点唯一地与一个聚类相关联,而EM算法基于后验概率进行软(soft)分配。事实上,可以从EM算法推导出K均值算法。考虑一个高斯混合模型,其中混合分量的协方差矩阵由σ2I{\sigma^2}Iσ2I给出,其中σ2{\sig
- 基于机器学习的智能文本分类技术研究与应用
在当今数字化时代,文本数据的爆炸式增长给信息管理和知识发现带来了巨大的挑战。从新闻文章、社交媒体帖子到企业文档和学术论文,海量的文本数据需要高效地分类和管理,以便用户能够快速找到所需信息。传统的文本分类方法主要依赖于人工规则和关键词匹配,这些方法不仅效率低下,而且难以应对复杂多变的文本内容。近年来,机器学习技术的快速发展为文本分类提供了一种高效、自动化的解决方案。一、机器学习在文本分类中的应用概述
- 鸿蒙开发:一文了解桌面卡片
前言本文基于Api13鸿蒙的桌面卡片功能,也就是服务卡片,和Android端的小部件以及iOS端的小组件功能是一样的,只是叫法不一样,都是将应用内比较核心的功能,或者用户关注度高的功能,通过触发桌面应用进行添加到服务卡片上,进而添加到桌面上,以此达到信息展示的及时性,相关功能直达应用内的便捷效果,可以说在用户体验上,是一个质的提升。触发方式也是十分的简单,无论你是Android、iOS还是Harm
- Transformer底层原理解析及基于pytorch的代码实现
LiRuiJie
人工智能transformerpytorch深度学习
1.Transformer底层原理解析1.1核心架构突破Transformer是自然语言处理领域的革命性架构,其核心设计思想完全摒弃了循环结构,通过自注意力机制实现全局依赖建模。整体架构图如下:以下是其核心组件:1)自注意力机制(Self-Attention)-输入序列的每个位置都能直接关注所有位置-数学公式(缩放点积注意力):-Q:查询矩阵(当前关注点)-K:键矩阵(被比较项)-V:值矩阵(实际
- 基于灰色马尔科夫模型预测人口数量,是一种结合灰色系统理论(处理少数据、不确定性)与马尔科夫链(描述随机波动)的融合预测方法
利用灰色模型捕捉人口变化的总体趋势,再通过马尔科夫链修正因随机因素导致的预测偏差,从而提高预测精度。一、模型理论基础灰色系统理论原理(核心:处理少数据、部分信息未知的系统)差异信息原理:系统内外的差异是信息源,人口数据的时间序列差异蕴含变化规律。解的非唯一性原理:信息不完全时,预测结果存在多个可能区间(与马尔科夫状态划分契合)。最小信息原理:仅需少量历史数据(通常≥4个)即可建模,适合人口统计资料
- 深入理解reeze/tipi项目中的词法分析与语法分析技术
焦习娜Samantha
深入理解reeze/tipi项目中的词法分析与语法分析技术tipiThinkingInPHPInternals,AnopenbookonPHPInternals项目地址:https://gitcode.com/gh_mirrors/ti/tipi引言在编程语言实现领域,词法分析和语法分析是构建编译器或解释器的关键环节。本文将基于reeze/tipi项目中的相关内容,深入浅出地讲解这些核心技术原理。
- 【机器学习与数据挖掘实战 | 医疗】案例18:基于Apriori算法的中医证型关联规则分析
Francek Chen
机器学习与数据挖掘实战机器学习数据挖掘Aprioripython关联规则人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈机器学习与数据挖掘实战⌋⌋⌋机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联和异常的过程,旨在提取有价值的信息和知识。机器学习为数据挖掘提供了强大的分析工具,而数据挖掘则是机器学习应用的重要领域,两者相辅相成,共同推动
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =