D-S证据理论

转自:http://blog.csdn.net/am45337908/article/details/48832947

一.D-S证据理论引入 
诞生 
  D-S证据理论的诞生:起源于20世纪60年代的哈佛大学数学家A.P. Dempster利用上、下限概率解决多值映射问题,1967年起连续发表一系列论文,标志着证据理论的正式诞生。   
形成 
  dempster的学生G.shafer对证据理论做了进一步发展,引入信任函数概念,形成了一套“证据”和“组合”来处理不确定性推理的数学方法 
  D-S理论是对贝叶斯推理方法推广,主要是利用概率论中贝叶斯条件概率来进行的,需要知道先验概率。而D-S证据理论不需要知道先验概率,能够很好地表示“不确定”,被广泛用来处理不确定数据。 
  适用于:信息融合、专家系统、情报分析、法律案件分析、多属性决策分析 

   
二.D-S证据理论的基本概念 

1、识别框架:由互不相容的基本命题(假定)组成的完备集合,表示对某一问题的所有可能答案,但其中只有一个答案是正确的。

2、mass函数(BPA):识别框架的子集称为命题。分配给各命题的信任程度称为基本概率分配。m(A)反映着对A的信度大小。

D-S证据理论_第1张图片

3、信任函数:信任函数Bel(A)表示对命题A的信任程度。

D-S证据理论_第2张图片


4、似然函数:似然函数Pl(A)表示对命题A非假的信任程度,也即对A似乎可能成立的不确定性度量。

D-S证据理论_第3张图片


5、合成规则以两个mass函数为例)。

D-S证据理论_第4张图片


三.D-S证据理论的组合规则 

 m个mass函数的Dempster合成规则 
 D-S证据理论_第5张图片 
 其中K称为归一化因子,1KA1...An=ϕm1(A1)m2(A2)mn(An)反  应了证据的冲突程度

四.判决规则 

 设存在A1,A2U,满足 
 m(A1)=max{m(Ai),AiU} 
 m(A2)=max{m(Ai),AiUAiA1} 
 若有: 
 m(A1)m(A2)>ε1 
 m(Θ)<ε2 
 m(A1)>m(Θ) 
 则A1为判决结果,ε1ε2为预先设定的门限,Θ为不确定集合 

五.D-S证据理论存在的问题 

  (一)无法解决证据冲突严重和完全冲突的情况 
 D-S证据理论_第6张图片 
 该识别框架为{Peter,Paul,Mary},基本概率分配函数为m{Peter},m{Paul},m{Mary} 
 由D-S证据理论的基本概念和组合规则进行解析 
D-S证据理论_第7张图片 
D-S证据理论_第8张图片  
D-S证据理论_第9张图片 
可以看出虽然在W1,W2目击中,peter和mary都为0.99,但是存在严重的冲突,造成合成之后的Bel函数值为0,这显然与实际情况不合,更极端的情况如果W1中m{peter)=1,W2中m{Mary}=1,则归一化因子K=0,D-S组合规则无法进行

D-S证据理论_第10张图片 
D-S证据理论_第11张图片 
D-S证据理论_第12张图片 
D-S证据理论_第13张图片 
D-S证据理论_第14张图片 
D-S证据理论_第15张图片 
D-S证据理论_第16张图片

(二)难以辨识模糊程度 

由于证据理论中的证据模糊主要来自于各子集的模糊度。根据信息论的观点,子集中元素的个数越多,子集的模糊度越大 
D-S证据理论_第17张图片
D-S证据理论_第18张图片
(三)基本概率分配函数的微小变化会使组合结果产生急剧变化 
D-S证据理论_第19张图片
D-S证据理论_第20张图片


在学习笔记(一)中,对D-S证据理论引入,对D-S证据理论的基本概念和存在的问题进行了学习。学习笔记(二)对证据理论的改进方法进行学习,主要学习了Yager的合成公式 

一.Yager合成公式  

D-S证据理论_第21张图片
 改进中主要引入了m(X),把冲突给了未知命题 
D-S证据理论_第22张图片
D-S证据理论_第23张图片
D-S证据理论_第24张图片

二.Yager合成公式改进  

 为了解决多个证据中有一个证据否定A,则合成结果也否认A,对Yager公式进行改进 
D-S证据理论_第25张图片
例1: 
D-S证据理论_第26张图片
D-S证据理论_第27张图片 
例2: 
D-S证据理论_第28张图片
D-S证据理论_第29张图片

你可能感兴趣的:(智能算法)