jdk版本是:1.6.0_20
http://kafka.apache.org/07/quickstart.html官方给的示例并不是很完整,以下代码是经过我补充的并且编译后能运行的。
Producer Code
- import java.util.*;
- import kafka.message.Message;
- import kafka.producer.ProducerConfig;
- import kafka.javaapi.producer.Producer;
- import kafka.javaapi.producer.ProducerData;
- public class ProducerSample {
- public static void main(String[] args) {
- ProducerSample ps = new ProducerSample();
- Properties props = new Properties();
- props.put("zk.connect", "127.0.0.1:2181");
- props.put("serializer.class", "kafka.serializer.StringEncoder");
- ProducerConfig config = new ProducerConfig(props);
- Producer
producer = new Producer (config); - ProducerData
data = new ProducerData ( "test-topic", "test-message2"); - producer.send(data);
- producer.close();
- }
- }
Consumer Code
- import java.nio.ByteBuffer;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import kafka.consumer.Consumer;
- import kafka.consumer.ConsumerConfig;
- import kafka.consumer.KafkaStream;
- import kafka.javaapi.consumer.ConsumerConnector;
- import kafka.message.Message;
- import kafka.message.MessageAndMetadata;
- public class ConsumerSample {
- public static void main(String[] args) {
- // specify some consumer properties
- Properties props = new Properties();
- props.put("zk.connect", "localhost:2181");
- props.put("zk.connectiontimeout.ms", "1000000");
- props.put("groupid", "test_group");
- // Create the connection to the cluster
- ConsumerConfig consumerConfig = new ConsumerConfig(props);
- ConsumerConnector consumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);
- // create 4 partitions of the stream for topic “test-topic”, to allow 4 threads to consume
- HashMap
map = new HashMap (); - map.put("test-topic", 4);
- Map
>> topicMessageStreams = - consumerConnector.createMessageStreams(map);
- List
> streams = topicMessageStreams.get("test-topic"); - // create list of 4 threads to consume from each of the partitions
- ExecutorService executor = Executors.newFixedThreadPool(4);
- // consume the messages in the threads
- for (final KafkaStream
stream : streams) { - executor.submit(new Runnable() {
- public void run() {
- for (MessageAndMetadata msgAndMetadata : stream) {
- // process message (msgAndMetadata.message())
- System.out.println("topic: " + msgAndMetadata.topic());
- Message message = (Message) msgAndMetadata.message();
- ByteBuffer buffer = message.payload();
- "white-space:pre"> byte[] bytes = new byte[message.payloadSize()];
- buffer.get(bytes);
- String tmp = new String(bytes);
- System.out.println("message content: " + tmp);
- }
- }
- });
- }
- }
- }
分别启动zookeeper,kafka server之后,依次运行Producer,Consumer的代码
运行ProducerSample:
运行ConsumerSample:
由于本人不熟悉java的多线程,将官方给的Consumer Code做点小改动,如下所示:
- import java.nio.ByteBuffer;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import kafka.consumer.Consumer;
- import kafka.consumer.ConsumerConfig;
- import kafka.consumer.KafkaStream;
- import kafka.javaapi.consumer.ConsumerConnector;
- import kafka.message.Message;
- import kafka.message.MessageAndMetadata;
- public class ConsumerSample2 {
- public static void main(String[] args) {
- // specify some consumer properties
- Properties props = new Properties();
- props.put("zk.connect", "localhost:2181");
- props.put("zk.connectiontimeout.ms", "1000000");
- props.put("groupid", "test_group");
- // Create the connection to the cluster
- ConsumerConfig consumerConfig = new ConsumerConfig(props);
- ConsumerConnector consumerConnector = Consumer.createJavaConsumerConnector(consumerConfig);
- HashMap
map = new HashMap (); - map.put("test-topic", 1);
- Map
>> topicMessageStreams = - consumerConnector.createMessageStreams(map);
- List
> streams = topicMessageStreams.get("test-topic"); - for (final KafkaStream
stream : streams) { - for (MessageAndMetadata msgAndMetadata : stream) {
- // process message (msgAndMetadata.message())
- System.out.println("topic: " + msgAndMetadata.topic());
- Message message = (Message) msgAndMetadata.message();
- ByteBuffer buffer = message.payload();
- byte[] bytes = new byte[message.payloadSize()];
- buffer.get(bytes);
- String tmp = new String(bytes);
- System.out.println("message content: " + tmp);
- }
- }
- }
- }
我在Producer端又发送了一条“test-message2”的消息,Consumer收到了两条消息,如下所示:
kafka作为分布式日志收集或系统监控服务,我们有必要在合适的场合使用它。kafka的部署包括zookeeper环境/kafka环境,同时还需要进行一些配置操作.接下来介绍如何使用kafka.
我们使用3个zookeeper实例构建zk集群,使用2个kafka broker构建kafka集群.
其中kafka为0.8V,zookeeper为3.4.5V
一.Zookeeper集群构建
我们有3个zk实例,分别为zk-0,zk-1,zk-2;如果你仅仅是测试使用,可以使用1个zk实例.
1) zk-0
调整配置文件:
- clientPort=2181
- server.0=127.0.0.1:2888:3888
- server.1=127.0.0.1:2889:3889
- server.2=127.0.0.1:2890:3890
- ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
- ./zkServer.sh start
2) zk-1
调整配置文件(其他配置和zk-0一只):
- clientPort=2182
- ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
- ./zkServer.sh start
3) zk-2
调整配置文件(其他配置和zk-0一只):
- clientPort=2183
- ##只需要修改上述配置,其他配置保留默认值
启动zookeeper
- ./zkServer.sh start
二. Kafka集群构建
因为Broker配置文件涉及到zookeeper的相关约定,因此我们先展示broker配置文件.我们使用2个kafka broker来构建这个集群环境,分别为kafka-0,kafka-1.
1) kafka-0
在config目录下修改配置文件为:
- broker.id=0
- port=9092
- num.network.threads=2
- num.io.threads=2
- socket.send.buffer.bytes=1048576
- socket.receive.buffer.bytes=1048576
- socket.request.max.bytes=104857600
- log.dir=./logs
- num.partitions=2
- log.flush.interval.messages=10000
- log.flush.interval.ms=1000
- log.retention.hours=168
- #log.retention.bytes=1073741824
- log.segment.bytes=536870912
- ##replication机制,让每个topic的partitions在kafka-cluster中备份2个
- ##用来提高cluster的容错能力..
- default.replication.factor=1
- log.cleanup.interval.mins=10
- zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
- zookeeper.connection.timeout.ms=1000000
因为kafka用scala语言编写,因此运行kafka需要首先准备scala相关环境。
- > cd kafka-0
- > ./sbt update
- > ./sbt package
- > ./sbt assembly-package-dependency
其中最后一条指令执行有可能出现异常,暂且不管。 启动kafka broker:
- > JMS_PORT=9997 bin/kafka-server-start.sh config/server.properties &
因为zookeeper环境已经正常运行了,我们无需通过kafka来挂载启动zookeeper.如果你的一台机器上部署了多个kafka broker,你需要声明JMS_PORT.
2) kafka-1
- broker.id=1
- port=9093
- ##其他配置和kafka-0保持一致
然后和kafka-0一样执行打包命令,然后启动此broker.
- > JMS_PORT=9998 bin/kafka-server-start.sh config/server.properties &
仍然可以通过如下指令查看topic的"partition"/"replicas"的分布和存活情况.
- > bin/kafka-list-topic.sh --zookeeper localhost:2181
- topic: my-replicated-topic partition: 0 leader: 2 replicas: 1,2,0 isr: 2
- topic: test partition: 0 leader: 0 replicas: 0 isr: 0
到目前为止环境已经OK了,那我们就开始展示编程实例吧。[配置参数详解]
三.项目准备
项目基于maven构建,不得不说kafka java客户端实在是太糟糕了;构建环境会遇到很多麻烦。建议参考如下pom.xml;其中各个依赖包必须版本协调一致。如果kafka client的版本和kafka server的版本不一致,将会有很多异常,比如"broker id not exists"等;因为kafka从0.7升级到0.8之后(正名为2.8.0),client与server通讯的protocol已经改变.
-
-
-
log4j -
log4j -
1.2.14 -
-
org.apache.kafka -
kafka_2.8.2 -
0.8.0 -
-
-
log4j -
log4j -
-
org.scala-lang -
scala-library -
2.8.2 -
-
com.yammer.metrics -
metrics-core -
2.2.0 -
-
com.101tec -
zkclient -
0.3
四.Producer端代码
1) producer.properties文件:此文件放在/resources目录下
- #partitioner.class=
- ##broker列表可以为kafka server的子集,因为producer需要从broker中获取metadata
- ##尽管每个broker都可以提供metadata,此处还是建议,将所有broker都列举出来
- metadata.broker.list=127.0.0.1:9092,127.0.0.1:9093
- ##,127.0.0.1:9093
- ##同步,建议为async
- producer.type=sync
- compression.codec=0
- serializer.class=kafka.serializer.StringEncoder
- ##在producer.type=async时有效
- #batch.num.messages=100
2) LogProducer.java代码样例
- package com.test.kafka;
- import java.util.ArrayList;
- import java.util.Collection;
- import java.util.List;
- import java.util.Properties;
- import kafka.javaapi.producer.Producer;
- import kafka.producer.KeyedMessage;
- import kafka.producer.ProducerConfig;
- public class LogProducer {
- private Producer
inner; - public LogProducer() throws Exception{
- Properties properties = new Properties();
- properties.load(ClassLoader.getSystemResourceAsStream("producer.properties"));
- ProducerConfig config = new ProducerConfig(properties);
- inner = new Producer
(config); - }
- public void send(String topicName,String message) {
- if(topicName == null || message == null){
- return;
- }
- KeyedMessage
km = new KeyedMessage (topicName,message);//如果具有多个partitions,请使用new KeyedMessage(String topicName,K key,V value). - inner.send(km);
- }
- public void send(String topicName,Collection
messages) { - if(topicName == null || messages == null){
- return;
- }
- if(messages.isEmpty()){
- return;
- }
- List
> kms = new ArrayList >(); - for(String entry : messages){
- KeyedMessage
km = new KeyedMessage (topicName,entry); - kms.add(km);
- }
- inner.send(kms);
- }
- public void close(){
- inner.close();
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- LogProducer producer = null;
- try{
- producer = new LogProducer();
- int i=0;
- while(true){
- producer.send("test-topic", "this is a sample" + i);
- i++;
- Thread.sleep(2000);
- }
- }catch(Exception e){
- e.printStackTrace();
- }finally{
- if(producer != null){
- producer.close();
- }
- }
- }
- }
五.Consumer端
1) consumer.properties:文件位于/resources目录下
- zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183
- ##,127.0.0.1:2182,127.0.0.1:2183
- # timeout in ms for connecting to zookeeper
- zookeeper.connectiontimeout.ms=1000000
- #consumer group id
- group.id=test-group
- #consumer timeout
- #consumer.timeout.ms=5000
- auto.commit.enable=true
- auto.commit.interval.ms=60000
2) LogConsumer.java代码样例
- package com.test.kafka;
- import java.util.HashMap;
- import java.util.List;
- import java.util.Map;
- import java.util.Properties;
- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
- import kafka.consumer.Consumer;
- import kafka.consumer.ConsumerConfig;
- import kafka.consumer.ConsumerIterator;
- import kafka.consumer.KafkaStream;
- import kafka.javaapi.consumer.ConsumerConnector;
- import kafka.message.MessageAndMetadata;
- public class LogConsumer {
- private ConsumerConfig config;
- private String topic;
- private int partitionsNum;
- private MessageExecutor executor;
- private ConsumerConnector connector;
- private ExecutorService threadPool;
- public LogConsumer(String topic,int partitionsNum,MessageExecutor executor) throws Exception{
- Properties properties = new Properties();
- properties.load(ClassLoader.getSystemResourceAsStream("consumer.properties"));
- config = new ConsumerConfig(properties);
- this.topic = topic;
- this.partitionsNum = partitionsNum;
- this.executor = executor;
- }
- public void start() throws Exception{
- connector = Consumer.createJavaConsumerConnector(config);
- Map
topics = new HashMap (); - topics.put(topic, partitionsNum);
- Map
byte [], byte[]>>> streams = connector.createMessageStreams(topics); - List
byte [], byte[]>> partitions = streams.get(topic); - threadPool = Executors.newFixedThreadPool(partitionsNum);
- for(KafkaStream<byte[], byte[]> partition : partitions){
- threadPool.execute(new MessageRunner(partition));
- }
- }
- public void close(){
- try{
- threadPool.shutdownNow();
- }catch(Exception e){
- //
- }finally{
- connector.shutdown();
- }
- }
- class MessageRunner implements Runnable{
- private KafkaStream<byte[], byte[]> partition;
- MessageRunner(KafkaStream<byte[], byte[]> partition) {
- this.partition = partition;
- }
- public void run(){
- ConsumerIterator<byte[], byte[]> it = partition.iterator();
- while(it.hasNext()){
- //connector.commitOffsets();手动提交offset,当autocommit.enable=false时使用
- MessageAndMetadata<byte[],byte[]> item = it.next();
- System.out.println("partiton:" + item.partition());
- System.out.println("offset:" + item.offset());
- executor.execute(new String(item.message()));//UTF-8,注意异常
- }
- }
- }
- interface MessageExecutor {
- public void execute(String message);
- }
- /**
- * @param args
- */
- public static void main(String[] args) {
- LogConsumer consumer = null;
- try{
- MessageExecutor executor = new MessageExecutor() {
- public void execute(String message) {
- System.out.println(message);
- }
- };
- consumer = new LogConsumer("test-topic", 2, executor);
- consumer.start();
- }catch(Exception e){
- e.printStackTrace();
- }finally{
- // if(consumer != null){
- // consumer.close();
- // }
- }
- }
- }
需要提醒的是,上述LogConsumer类中,没有太多的关注异常情况,必须在MessageExecutor.execute()方法中抛出异常时的情况.
在测试时,建议优先启动consumer,然后再启动producer,这样可以实时的观测到最新的消息。