Pytorch学习笔记(三)线性回归与逻辑回归

在了解了Pytorch的一些机制后,当然要进行一些实例的学习,毕竟实践出真知嘛。
对于所有的机器学习爱好者来说,第一个要学的模型无疑是线性回归
所谓线性回归,指的就是用对输入数据的每个维度进行线性组合拟合Label-y。最简单的线性回归即是二维平面内的直线拟合。

为此我们可以编造一些数据:

import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from torch.autograd import Variable

#toy dataset
x_train = np.linespace(1,0.1,100)
y = 3*x
y_train = [yo + np.random.uniform(0,1) for yo in y]

然后是模型的主体部分,在Pytorch中,所有的模型都要继承自nn.Module这个类(或继承自nn.Module这个类的子类)

# Hyper Parameters
input_size = 1
output_size = 1
num_epochs = 60
learning_rate = 0.001

# Linear Regression Model
class LinearRegression(nn.Module):
    def __init__(self, input_size, output_size):
        super(LinearRegression, self).__init__()
        self.linear = nn.Linear(input_size, output_size)  

    def forward(self, x):
        out = self.linear(x)
        return out

model = LinearRegression(input_size, output_size)

# Loss and Optimizer
criterion = nn.MSELoss() #采用最小均方误差是线性回归
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Train the Model 
for epoch in range(num_epochs):
    # Convert numpy array to torch Variable
    inputs = Variable(torch.from_numpy(x_train))
    targets = Variable(torch.from_numpy(y_train))

    # Forward + Backward + Optimize
    optimizer.zero_grad()  
    outputs = model(inputs)             #forward
    loss = criterion(outputs, targets)  #loss
    loss.backward()                     #backward
    optimizer.step()

    if (epoch+1) % 5 == 0:
        print ('Epoch [%d/%d], Loss: %.4f' 
               %(epoch+1, num_epochs, loss.data[0]))

# Plot the graph
predicted = model(Variable(torch.from_numpy(x_train))).data.numpy()
plt.plot(x_train, y_train, 'ro', label='Original data')
plt.plot(x_train, predicted, label='Fitted line')
plt.legend()
plt.show()

# Save the Model
torch.save(model.state_dict(), 'model.pkl')

逻辑回归虽然名为回归,但是其是一个分类模型,逻辑回归与线性回归一样是对数据进行线性变换,但是由于其输出时使用了Sigmoid函数,人们往往并不认为它是一个纯的线性模型。得益于Sigmoid函数,逻辑回归可以轻松地进行二分类。在处理多分类问题时,逻辑回归进化为Softmax回归,在强大的Softmax函数的帮助下(其可以将任意向量映射成概率分布),诸多多分类问题得到有效解决,例如图像识别(ImageNet)。
下面是一个用Pytorch进行Mnist手写数据集识别分类的例子,在这个例子中,没有使用CNN,直接把输入打成一个一维向量进行线性运算。

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable


# Hyper Parameters 
input_size = 784
num_classes = 10
num_epochs = 5
batch_size = 100
learning_rate = 0.001

# MNIST Dataset (Images and Labels)
train_dataset = dsets.MNIST(root='./data', 
                            train=True, 
                            transform=transforms.ToTensor(),
                            download=True)

test_dataset = dsets.MNIST(root='./data', 
                           train=False, 
                           transform=transforms.ToTensor())

# Dataset Loader (Input Pipline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, 
                                           batch_size=batch_size, 
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset, 
                                          batch_size=batch_size, 
                                          shuffle=False)

# Model
class LogisticRegression(nn.Module):
    def __init__(self, input_size, num_classes):
        super(LogisticRegression, self).__init__()
        self.linear = nn.Linear(input_size, num_classes)

    def forward(self, x):
        out = self.linear(x)
        return out

model = LogisticRegression(input_size, num_classes)

# Loss and Optimizer
# Softmax is internally computed.
# Set parameters to be updated.
criterion = nn.CrossEntropyLoss()  
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)  

# Training the Model
for epoch in range(num_epochs):
    for i, (images, labels) in enumerate(train_loader):
        images = Variable(images.view(-1, 28*28))
        labels = Variable(labels)  #这里labels是one_hot编码的

        # Forward + Backward + Optimize
        optimizer.zero_grad()
        outputs = model(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' 
                   % (epoch+1, num_epochs, i+1, len(train_dataset)//batch_size, loss.data[0]))

# Test the Model
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images.view(-1, 28*28))
    outputs = model(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum()

print('Accuracy of the model on the 10000 test images: %d %%' % (100 * correct / total))

# Save the Model
torch.save(model.state_dict(), 'model.pkl')

你可能感兴趣的:(Pytorch)