[LeetCode日记指南] 17. Letter Combinations of a Phone Number(回溯法)

题目描述

Given a string containing digits from 2-9 inclusive, return all possible letter combinations that the number could represent.
A mapping of digit to letters (just like on the telephone buttons) is given below. Note that 1 does not map to any letters.
Example:
Input: “23”
Output: [“ad”, “ae”, “af”, “bd”, “be”, “bf”, “cd”, “ce”, “cf”].

回溯法

回溯法(探索与回溯法)是一种选优搜索法,又称为试探法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。回溯法探索所有可能的候选组合找到所有解。

思路

我们用递归Recursion来解,我们需要建立一个字典,用来保存每个数字所代表的字符串,用next_digits表示剩下需要检查的字母。在递归函数中我们首先判断如果没有字母需要检查,我们将当前的组合加入结果output中,然后返回。否则我们通过digits中的数字到dict中取出字符串,然后遍历这个取出的字符串,将每个字符都加到当前的组合后面,并调用递归函数。

代码与注释

class Solution:
    def letterCombinations(self, digits):
        """
        :type digits: str
        :rtype: List[str]
        """
        phone = {'2': ['a', 'b', 'c'],
                 '3': ['d', 'e', 'f'],
                 '4': ['g', 'h', 'i'],
                 '5': ['j', 'k', 'l'],
                 '6': ['m', 'n', 'o'],
                 '7': ['p', 'q', 'r', 's'],
                 '8': ['t', 'u', 'v'],
                 '9': ['w', 'x', 'y', 'z']}
                
        def backtrack(combination, next_digits):
            # if there is no more digits to check
            if len(next_digits) == 0:
                # the combination is done
                output.append(combination)
            # if there are still digits to check
            else:
                # iterate over all letters which map 
                # the next available digit
                for letter in phone[next_digits[0]]:
                    # append the current letter to the combination
                    # and proceed to the next digits
                    backtrack(combination + letter, next_digits[1:])
                    
        output = []
        if digits:
            backtrack("", digits)
        return output

结果分析

[LeetCode日记指南] 17. Letter Combinations of a Phone Number(回溯法)_第1张图片

你可能感兴趣的:(leetcode)