LeetCode笔记:396. Rotate Function

问题:

Given an array of integers A and let n to be its length.

Assume Bk to be an array obtained by rotating the array A k positions clock-wise, we define a “rotation function” F on A as follow:

F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].

Calculate the maximum value of F(0), F(1), …, F(n-1).

Note:
n is guaranteed to be less than 105.

Example:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.

大意:

给出一个整型数组A,设n为其长度。

假设Bk是将A进行k此顺时针旋转后的数组,我们定义一个A的“旋转函数”F,如下:

F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1].

注意:
n保证不会超过10的5次方

例子:

A = [4, 3, 2, 6]

F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26

所以 F(0), F(1), F(2), F(3) 中最大的值为 F(3) = 26.

思路:

这个题目的意思就是对A进行旋转求多项式,每次旋转系数移动一次,旋转一次求出一个结果,看哪个最大就返回哪个。

我的做法是直接进行每一个的计算然后找最大的,代码挺简单,时间复杂度是O(n平方),很长。

代码(Java):

public class Solution {
    public int maxRotateFunction(int[] A) {
        if (A.length == 0) return 0;
        int result = -2147483648;
        for (int i = 0; i < A.length; i++) {
            int sum = sum(A, A.length - i);
            if (sum > result) result = sum;
        }
        return result;
    }

    public int sum(int[] A, int index) {
        int sum = 0;
        for (int i = 0; i < A.length; i++) {
            if (index >= A.length) index = 0;
            sum += i * A[index];
            index ++;
        }
        return sum;
    }
}

他山之石:

public class Solution {
    public int maxRotateFunction(int[] A) {
        int allSum = 0;
        int len = A.length;
        int F = 0;
        for (int i = 0; i < len; i++) {
            F += i * A[i];
            allSum += A[i];
        }
        int max = F;
        for (int i = len - 1; i >= 1; i--) {
            F = F + allSum - len * A[i];
            max = Math.max(F, max);
        }
        return max; 
    }
}

这个做法的好处在于只需要O(n)的时间,快很多。他对题目的要求进行了一些数学计算,然后得出了一个方便计算的式子,过程如下:

F(k) = 0 * Bk[0] + 1 * Bk[1] + … + (n-1) * Bk[n-1]
F(k-1) = 0 * Bk-1[0] + 1 * Bk-1[1] + … + (n-1) * Bk-1[n-1]
   = 0 * Bk[1] + 1 * Bk[2] + … + (n-2) * Bk[n-1] + (n-1) * Bk[0]

那么,

F(k) - F(k-1) = Bk[1] + Bk[2] + … + Bk[n-1] + (1-n)Bk[0]
      = (Bk[0] + … + Bk[n-1]) - nBk[0]
      = sum - nBk[0]

因此,

F(k) = F(k-1) + sum - nBk[0]

那Bk[0]是什么呢?

k = 0; B[0] = A[0];
k = 1; B[0] = A[len-1];
k = 2; B[0] = A[len-2];

这样,也就有了上面的代码了。


合集:https://github.com/Cloudox/LeetCode-Record
版权所有:http://blog.csdn.net/cloudox_

你可能感兴趣的:(leetcode,LeetCode,LeetCode笔记)