- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 大语言模型(LLM)量化基础知识(一)
-派神-
RAGNLPChatGPT语言模型人工智能自然语言处理
承接各类AI相关应用开发项目(包括但不限于大模型微调、RAG、AI智能体、NLP、机器学习算法、运筹优化算法、数据分析EDA等)!!!有意愿请私信!!!随着大型语言模型(LLM)的参数数量的增长,与其支持硬件(加速器内存)增长速度之间的差距越来越大,如下图所示:上图显示,从2017年到2022年,语言模型的大小显著增加:2017年:Transformer模型(0.05B参数)2018年:GPT(0
- 对话云蝠智能:大模型如何让企业呼叫系统从 “成本中心” 变身 “价值枢纽”?
MARS_AI_
人工智能自然语言处理信息与通信交互
在人工智能重塑企业服务的浪潮中,云蝠智能(南京星蝠科技有限公司旗下品牌)以深厚的技术积累和行业实践,逐步成长为国内智能外呼领域的标杆企业。其发展路径揭示了技术自主创新与场景深度结合的必然性。一、技术架构:全栈自研奠定领先基础云蝠智能的核心竞争力源于其全链路自研技术体系。该架构覆盖语音识别(ASR)、自然语言处理(NLP)、语音合成(TTS)及软交换六大层级,实现从基础设施到操作层的闭环设计。这一分
- Jenkins JNLP与SSH节点连接方式对比及连接断开问题解决方案
tianyuanwo
devopsjenkinsssh运维
一、JNLPvsSSH连接方式优缺点对比对比维度JNLP(JavaWebStart)SSH(SecureShell)核心原理代理节点主动连接Jenkins主节点,通过加密通道通信,支持动态资源分配。Jenkins通过SSH协议远程登录代理节点执行命令,需预先配置SSH服务。适用场景容器化环境(如Kubernetes)、需要跨平台或动态扩缩容的场景。传统物理机/虚拟机、静态节点或简单命令执行场景。安
- 用AI写一个自动记录手机支付记录的小插件
教程python
要实现一个自动记录手机支付记录的小插件,核心是利用AI技术解析支付通知短信/通知栏消息。以下是通过训练让AI写代码实现方案:基础方案:手动输入+AI分类(无需权限)#使用Python+Tkinter(界面)+简易NLP分类importtkinterastkfromdatetimeimportdatetimeimportreclassPaymentTracker:def__init__(self):
- AI 销售系统:重塑销售格局的科技利器
小柔说科技
人工智能科技java
在数字化浪潮汹涌澎湃的当下,人工智能(AI)正以前所未有的速度渗透到各个行业,销售领域也不例外。AI销售系统作为一种融合了先进人工智能技术的创新工具,正逐渐成为企业提升销售效率、优化客户体验、增强市场竞争力的关键因素。一、AI销售系统的概念与核心技术AI销售系统是基于人工智能技术构建的一套综合性销售管理平台,它整合了自然语言处理(NLP)、机器学习(ML)、数据分析、预测建模等多种核心技术。通过这
- 【炼丹炉】Conda环境离线迁移
黑白象
炼丹笔记自然语言处理pippythonanacondalinux
1.背景笔者所在公司最近要在局域网内部署NLP算法模型,由于需求方对数据安全有严格要求,新服务器所在局域网不能直接访问Internet,因此需要将模型所需的运行环境离线迁移到新服务器中。2.方案2.1conda-packconda-pack是一个命令行工具,用于打包conda环境。该命令会将坏境中安装的软件包的二进制文件进行打包。注:本方法不需要下载安装包,因此,conda-pack需要指定平台和
- NLP市场规模将破千千亿,哪些岗位会成为新风口?
duolapig
人工智能
近年来,自然语言处理(NLP)技术在全球范围内掀起了一场“语言革命”。从智能客服到机器翻译,从情感分析到内容生成,NLP正以惊人的速度重塑人类与机器的交互方式。艾媒咨询数据显示,2023年中国NLP市场规模已达660亿元,预计2027年将突破千亿大关。这一数字背后,不仅是技术迭代的加速,更是一场深刻的人才需求变革。在AI大模型浪潮的推动下,新的职业风口正在形成,而这场变革的核心逻辑,是技术与产业融
- RNN、LSTM、GRU详解
昔颜1121
人工智能rnnpython
RNN、LSTM、GRU详解在深度学习领域,序列数据(如语音识别、机器翻译、文本生成等)广泛应用于自然语言处理(NLP)、时间序列预测、语音和视频处理等任务中。针对序列数据,循环神经网络(RNN,RecurrentNeuralNetwork)及其改进版本——长短时记忆网络(LSTM,LongShort-TermMemory)和门控循环单元(GRU,GatedRecurrentUnit)成为处理时序
- 小白的进阶之路系列之十六----人工智能从初步到精通pytorch综合运用的讲解第九部分
金沙阳
人工智能pytorchpython
从零开始学习NLP在这个由三部分组成的系列中,你将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。你将学习如何从零开始构建循环神经网络NLP的基本数据处理技术如何训练RNN以识别单词的语言来源。从零开始学自然语言处理:使用字符级RNN对名字进行分类我们将构建并训练一个基本的字符级循环神经网络(RNN)来对单词进行分类。展示了如何预处理数据以建模NLP。特别是,这些教程展示了如何以
- 使用Hugging Face的BGE模型进行文本嵌入
lirxx
人工智能langchain
在文本嵌入领域,BGE(BeijingAcademyofArtificialIntelligenceEmbeddings)模型是开源界的佼佼者。由北京智源人工智能研究院(BAAI)开发,BGE模型以其高效的嵌入性能和开放性获得了广泛的认可。本文将通过HuggingFace平台展示如何使用BGE模型进行文本嵌入。技术背景介绍文本嵌入是将文本数据转换为可计算向量的过程,这在自然语言处理(NLP)中具有
- 第8章:智能菜谱生成器——语言模型如何解析烹饪秘方
白嫖不白嫖
深度求索-DeepSeek语言模型人工智能自然语言处理
第8章:智能菜谱生成器——语言模型如何解析烹饪秘方从语义理解到操作执行的完整技术解密工业案例背景:法国里昂的Bocused’Or国际烹饪大赛选手手册中记载这样一道经典指令:“将酱汁熬煮至Nappé状态(即勺子划过痕迹缓慢回填)”。当传统NLP系统将其简单译为"煮浓",新一代Transformer模型却精准解析出粘度为1500-2000cP的物性指标,并据此生成控温方案。这背后的核心技术便是基于烹饪
- WebRTC 语音激活检测(VAD)算法
u013250861
Audiowebrtc算法语音识别
语音激活检测最早应用于电话传输和检测系统当中,用于通信信道的时间分配,提高传输线路的利用效率。激活检测属于语音处理系统的前端操作,在语音检测领域意义重大。但是目前的语音激活检测,尤其是检测人声开始和结束的端点始终是属于技术难点,各家公司始终处于能判断,但是不敢保证判别准确性的阶段。通常搭建机器人聊天系统主要包括以下三个方面:语音转文字(ASR/STT)语义内容(NLU/NLP)文字转语音(TTS)
- Java企业技术趋势分析:AI驱动下的Spring AI、LangChain4j与RAG系统架构
在未来等你
Java场景面试宝典AI技术编程JavaSpring
【Java企业技术趋势分析:AI驱动下的SpringAI、LangChain4j与RAG系统架构】开篇在当今快速发展的技术环境中,人工智能(AI)正在以前所未有的速度重塑企业的技术架构和业务流程。Java作为企业级开发的主流语言之一,在AI应用落地方面也迎来了新的机遇和挑战。从自然语言处理(NLP)到机器学习(ML),再到生成式AI(GenerativeAI),Java开发者正在积极拥抱这些新兴技
- 【资源共享】eBook分享大集合
天堂的鸽子
杂七杂八资源分享
文章目录eBook分享大集合服务器系统类(9)机器学习类(17)NLP算法类(19)网络类(6)程序语言类C/C++语言(8)Python语言(14)Java语言(14)PHP语言(4)C#/.NET语言(21)Web技术(12)数据库类Oracle(5)MySQL(8)SQLServer(10)大数据类(11)其他系列IT思维类(15)架构设计类(11)敏捷开发类(21)面试精华文档Java(3
- 预训练目标:BERT 更适配 “理解类” 任务
在NLP任务中,更倾向于用BERT而非GPT做预训练,核心原因与两者的模型设计、任务适配性、资源成本有关,具体可从以下维度拆解:一、预训练目标:BERT更适配“理解类”任务BERT的双向预训练目标:通过掩码语言模型(MLM)和下一句预测(NSP),强制模型学习上下文的双向语义依赖(比如用“[MASK]是水果”的前后文猜“苹果”),天生适合文本理解、分类、问答等任务。GPT的单向预训练目标:基于自回
- PyABSA 入门指南:基于深度学习的情感分析工具包
是纯一呀
DeepLearningAINLP深度学习人工智能NLP
在自然语言处理(NLP)领域,情感分析(SentimentAnalysis)一直是热门任务之一。而基于方面的情感分析(Aspect-BasedSentimentAnalysis,ABSA),则是更细粒度的分析方式——不仅判断正负情绪,还识别情绪对象(方面)和具体情感极性(如好/差)。什么是PyABSA?PyABSA(PythonAspect-BasedSentimentAnalysis)是一个专为
- AI智能时代SEO优化,AISEO-人工智能搜索引擎优化
weixin_ggwwsscc
人工智能搜索引擎deepseekAIseo
AI驱动的关键词精准匹配与语义理解传统的关键词排名规则主要依赖于关键词的字面匹配,即网站内容中出现的关键词与用户搜索词完全一致或高度相似时,才有可能获得较好的排名。然而,随着AI技术在搜索引擎中的广泛应用,这一局面正在发生深刻改变。如今的搜索引擎借助自然语言处理(NLP)和机器学习算法,能够深入理解用户搜索词背后的语义和意图,实现更精准的内容匹配。AI智能时代SEO优化,AISEO-人工智能搜索引
- 大语言模型应用指南:多模态大语言模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI大模型应用入门实战与进阶计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:多模态大语言模型作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:多模态大语言模型(MMLM),多媒体数据处理,自然语言理解,图像文本生成,应用场景探索1.背景介绍1.1问题的由来随着人工智能技术的迅速发展,特别是自然语言处理(NLP)领域的突破,大型语言模型(LargeLanguageModels,LLMs)成为研究热点。
- Milvus 向量数据库详解与实践指南
JJJ@666
基础知识(人工智能AI)milvus向量数据库图像检索推荐系统
一、Milvus核心介绍1.什么是Milvus?Milvus是一款开源、高性能、可扩展的向量数据库,专门为海量向量数据的存储、索引和检索而设计。它支持近似最近邻搜索(ANN),适用于图像检索、自然语言处理(NLP)、推荐系统、语义搜索、智能问答、多模态数据处理等AI应用场景。它能够高效处理:嵌入向量(Embeddings)特征向量(FeatureVectors)任何高维数值向量2.核心特性特性说明
- 【AI论文】MultiFinBen:一个用于金融大语言模型评估的多语言、多模态且具备难度感知能力的基准测试集
东临碣石82
人工智能金融语言模型
摘要:近期,大型语言模型(LLMs)的进展加速了金融自然语言处理(NLP)及其应用的发展,然而现有的基准测试仍局限于单语言和单模态场景,往往过度依赖简单任务,无法反映现实世界金融交流的复杂性。我们推出了MultiFinBen,这是首个针对全球金融领域定制的多语言、多模态基准测试集,用于在特定领域任务上跨模态(文本、视觉、音频)和语言环境(单语言、双语、多语言)对大型语言模型进行评估。我们引入了两个
- 小白的进阶之路系列之十七----人工智能从初步到精通pytorch综合运用的讲解第十部分
金沙阳
人工智能pytorchpython
NLP从零开始:使用字符级RNN生成姓名这是我们“NLP从零开始”系列三部分教程中的第二部分。在第一个教程中,我们使用了RNN将姓名分类到其语言来源。这次我们将反过来,从语言生成姓名。>pythonsample.pyRussianRUSRovakovUantovShavakov>pythonsample.pyGermanGERGerrenErengRosher>pythonsample.pySpa
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- 程序代码篇---ESP32-S3小智固件
Atticus-Orion
深度学习篇程序代码篇上位机知识篇AIEsp32-S3小智
Q1:ESP32-S3小智语音对话系统的整体架构是怎样的?A1:该系统采用“语音采集→唤醒词检测→ASR→NLP→TTS→语音播放”的流水线架构:硬件层:ESP32-S3芯片+麦克风阵列(如INMP441)+扬声器(如MAX98357A)。驱动层:ESP-IDF或Arduino框架提供的I2S、ADC、DAC驱动。算法层:唤醒词检测:基于MicroML(如TensorFlowLiteMicro)。
- NLPIR智能语义:大数据精准挖掘是信息化发展趋势
weixin_33778544
大数据数据库人工智能
随着信息技术的高速发展、数据库管理系统的广泛应用,人们积累的数据量急剧增长,大量的信息给人们带来方便的同时,也带来了诸如:信息过量难以消化,信息真假难以辨识,信息安全难以保证,信息形式不一致难以统一处理等问题。如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应这种需要应运而生发展起来的数据处理技术。数据挖掘就是对观测到的数据集进行分析,目的是发现未知的关系和以数据拥有者可以理解并对其
- 从代码学习深度学习 - 情感分析及数据集 PyTorch版
飞雪白鹿€
#自然语言处理深度学习pytorch
文章目录前言1.认识数据集:aclImdb基本信息数据结构特点2.解压与读取数据2.1解压文件2.2读取评论与标签3.预处理数据集3.1词元化与构建词汇表3.2分析评论长度3.3截断与填充4.创建数据迭代器5.整合所有步骤总结前言欢迎来到“从代码学习深度学习”系列!今天,我们将深入探讨自然语言处理(NLP)中的一个核心任务:情感分析。随着互联网的普及,从产品评论、社交媒体到论坛讨论,我们每天都在产
- 文本表示的发展概述
抱抱宝
大模型自然语言处理
文本表示的目的是将人类语言的自然形式转化为计算机可以处理的形式,也就是将文本数据数字化,使计算机能够对文本进行有效的分析和处理。文本表示是NLP领域中的一项基础性和必要性工作,它直接影响甚至决定着NLP系统的质量和性能。在NLP中,文本表示涉及到将文本中的语言单位(如字、词、短语、句子等)以及它们之间的关系和结构信息转换为计算机能够理解和操作的形式,例如向量、矩阵或其他数据结构。这样的表示不仅需要
- Linux根据进程id获取此进程的端口号
Linux根据进程id获取此进程的端口号:在Linux中,可以通过/proc文件系统来获取一个进程的相关信息,包括其端口号。以下是一种常见的方法,可以根据进程ID获取对应进程的端口号:1、使用netstat命令结合管道和过滤器,来查找与指定进程ID相关的网络连接。netstat-nlp|grep2、执行上面命令,结果如下,其中8501就是37这个进程的端口号3、根据端口号查找进程lsof-i:或者
- 深度解析 ImportError: cannot import name AdamW from transformers——从报错原理到完美解决方案
Tadas-Gao
机器学习人工智能机器学习pytorchLLMpython
为什么这个错误值得关注?在自然语言处理(NLP)领域,HuggingFace的transformers库已成为事实上的标准工具。然而,随着库的快速迭代,开发者经常会遇到ImportError:cannotimportname'AdamW'from'transformers'这个看似简单却令人头疼的错误。本文将带你深入理解这个错误的本质,提供多种解决方案,并分享版本管理的专业技巧,帮助你在AI开发中
- 美元反弹压制金价:基于ARIMA-GARCH模型的汇率-黄金联动效应解构
金融小师妹
人工智能大数据算法
摘要:本文采用LSTM-Attention混合模型进行价格序列特征提取,结合自然语言处理(NLP)构建政策不确定性指数(PUI),运用ARIMA-GARCH模型预测美元流动性溢价因子(DLP)变动。通过DSGE模型模拟贸易政策冲击传导路径,并基于Nelson-Siegel模型分解美债收益率曲线结构分析。现货黄金呈现典型的三阶段波动特征:首先在3392美元/盎司关键阻力位触发动量交易突破,随后因美元
- github中多个平台共存
jackyrong
github
在个人电脑上,如何分别链接比如oschina,github等库呢,一般教程之列的,默认
ssh链接一个托管的而已,下面讲解如何放两个文件
1) 设置用户名和邮件地址
$ git config --global user.name "xx"
$ git config --global user.email "
[email protected]"
- ip地址与整数的相互转换(javascript)
alxw4616
JavaScript
//IP转成整型
function ip2int(ip){
var num = 0;
ip = ip.split(".");
num = Number(ip[0]) * 256 * 256 * 256 + Number(ip[1]) * 256 * 256 + Number(ip[2]) * 256 + Number(ip[3]);
n
- 读书笔记-jquey+数据库+css
chengxuyuancsdn
htmljqueryoracle
1、grouping ,group by rollup, GROUP BY GROUPING SETS区别
2、$("#totalTable tbody>tr td:nth-child(" + i + ")").css({"width":tdWidth, "margin":"0px", &q
- javaSE javaEE javaME == API下载
Array_06
java
oracle下载各种API文档:
http://www.oracle.com/technetwork/java/embedded/javame/embed-me/documentation/javame-embedded-apis-2181154.html
JavaSE文档:
http://docs.oracle.com/javase/8/docs/api/
JavaEE文档:
ht
- shiro入门学习
cugfy
javaWeb框架
声明本文只适合初学者,本人也是刚接触而已,经过一段时间的研究小有收获,特来分享下希望和大家互相交流学习。
首先配置我们的web.xml代码如下,固定格式,记死就成
<filter>
<filter-name>shiroFilter</filter-name>
&nbs
- Array添加删除方法
357029540
js
刚才做项目前台删除数组的固定下标值时,删除得不是很完整,所以在网上查了下,发现一个不错的方法,也提供给需要的同学。
//给数组添加删除
Array.prototype.del = function(n){
- navigation bar 更改颜色
张亚雄
IO
今天郁闷了一下午,就因为objective-c默认语言是英文,我写的中文全是一些乱七八糟的样子,到不是乱码,但是,前两个自字是粗体,后两个字正常体,这可郁闷死我了,问了问大牛,人家告诉我说更改一下字体就好啦,比如改成黑体,哇塞,茅塞顿开。
翻书看,发现,书上有介绍怎么更改表格中文字字体的,代码如下
 
- unicode转换成中文
adminjun
unicode编码转换
在Java程序中总会出现\u6b22\u8fce\u63d0\u4ea4\u5fae\u535a\u641c\u7d22\u4f7f\u7528\u53cd\u9988\uff0c\u8bf7\u76f4\u63a5这个的字符,这是unicode编码,使用时有时候不会自动转换成中文就需要自己转换了使用下面的方法转换一下即可。
/**
* unicode 转换成 中文
- 一站式 Java Web 框架 firefly
aijuans
Java Web
Firefly是一个高性能一站式Web框架。 涵盖了web开发的主要技术栈。 包含Template engine、IOC、MVC framework、HTTP Server、Common tools、Log、Json parser等模块。
firefly-2.0_07修复了模版压缩对javascript单行注释的影响,并新增了自定义错误页面功能。
更新日志:
增加自定义系统错误页面功能
- 设计模式——单例模式
ayaoxinchao
设计模式
定义
Java中单例模式定义:“一个类有且仅有一个实例,并且自行实例化向整个系统提供。”
分析
从定义中可以看出单例的要点有三个:一是某个类只能有一个实例;二是必须自行创建这个实例;三是必须自行向系统提供这个实例。
&nb
- Javascript 多浏览器兼容性问题及解决方案
BigBird2012
JavaScript
不论是网站应用还是学习js,大家很注重ie与firefox等浏览器的兼容性问题,毕竟这两中浏览器是占了绝大多数。
一、document.formName.item(”itemName”) 问题
问题说明:IE下,可以使用 document.formName.item(”itemName”) 或 document.formName.elements ["elementName&quo
- JUnit-4.11使用报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing错误
bijian1013
junit4.11单元测试
下载了最新的JUnit版本,是4.11,结果尝试使用发现总是报java.lang.NoClassDefFoundError: org/hamcrest/SelfDescribing这样的错误,上网查了一下,一般的解决方案是,换一个低一点的版本就好了。还有人说,是缺少hamcrest的包。去官网看了一下,如下发现:
- [Zookeeper学习笔记之二]Zookeeper部署脚本
bit1129
zookeeper
Zookeeper伪分布式安装脚本(此脚本在一台机器上创建Zookeeper三个进程,即创建具有三个节点的Zookeeper集群。这个脚本和zookeeper的tar包放在同一个目录下,脚本中指定的名字是zookeeper的3.4.6版本,需要根据实际情况修改):
#!/bin/bash
#!!!Change the name!!!
#The zookeepe
- 【Spark八十】Spark RDD API二
bit1129
spark
coGroup
package spark.examples.rddapi
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.SparkContext._
object CoGroupTest_05 {
def main(args: Array[String]) {
v
- Linux中编译apache服务器modules文件夹缺少模块(.so)的问题
ronin47
modules
在modules目录中只有httpd.exp,那些so文件呢?
我尝试在fedora core 3中安装apache 2. 当我解压了apache 2.0.54后使用configure工具并且加入了 --enable-so 或者 --enable-modules=so (两个我都试过了)
去make并且make install了。我希望在/apache2/modules/目录里有各种模块,
- Java基础-克隆
BrokenDreams
java基础
Java中怎么拷贝一个对象呢?可以通过调用这个对象类型的构造器构造一个新对象,然后将要拷贝对象的属性设置到新对象里面。Java中也有另一种不通过构造器来拷贝对象的方式,这种方式称为
克隆。
Java提供了java.lang.
- 读《研磨设计模式》-代码笔记-适配器模式-Adapter
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 适配器模式解决的主要问题是,现有的方法接口与客户要求的方法接口不一致
* 可以这样想,我们要写这样一个类(Adapter):
* 1.这个类要符合客户的要求 ---> 那显然要
- HDR图像PS教程集锦&心得
cherishLC
PS
HDR是指高动态范围的图像,主要原理为提高图像的局部对比度。
软件有photomatix和nik hdr efex。
一、教程
叶明在知乎上的回答:
http://www.zhihu.com/question/27418267/answer/37317792
大意是修完后直方图最好是等值直方图,方法是HDR软件调一遍,再结合不透明度和蒙版细调。
二、心得
1、去除阴影部分的
- maven-3.3.3 mvn archetype 列表
crabdave
ArcheType
maven-3.3.3 mvn archetype 列表
可以参考最新的:http://repo1.maven.org/maven2/archetype-catalog.xml
[INFO] Scanning for projects...
[INFO]
- linux shell 中文件编码查看及转换方法
daizj
shell中文乱码vim文件编码
一、查看文件编码。
在打开文件的时候输入:set fileencoding
即可显示文件编码格式。
二、文件编码转换
1、在Vim中直接进行转换文件编码,比如将一个文件转换成utf-8格式
&
- MySQL--binlog日志恢复数据
dcj3sjt126com
binlog
恢复数据的重要命令如下 mysql> flush logs; 默认的日志是mysql-bin.000001,现在刷新了重新开启一个就多了一个mysql-bin.000002
- 数据库中数据表数据迁移方法
dcj3sjt126com
sql
刚开始想想好像挺麻烦的,后来找到一种方法了,就SQL中的 INSERT 语句,不过内容是现从另外的表中查出来的,其实就是 MySQL中INSERT INTO SELECT的使用
下面看看如何使用
语法:MySQL中INSERT INTO SELECT的使用
1. 语法介绍
有三张表a、b、c,现在需要从表b
- Java反转字符串
dyy_gusi
java反转字符串
前几天看见一篇文章,说使用Java能用几种方式反转一个字符串。首先要明白什么叫反转字符串,就是将一个字符串到过来啦,比如"倒过来念的是小狗"反转过来就是”狗小是的念来过倒“。接下来就把自己能想到的所有方式记录下来了。
1、第一个念头就是直接使用String类的反转方法,对不起,这样是不行的,因为Stri
- UI设计中我们为什么需要设计动效
gcq511120594
UIlinux
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用
- JBOSS服务部署端口冲突问题
HogwartsRow
java应用服务器jbossserverEJB3
服务端口冲突问题的解决方法,一般修改如下三个文件中的部分端口就可以了。
1、jboss5/server/default/conf/bindingservice.beans/META-INF/bindings-jboss-beans.xml
2、./server/default/deploy/jbossweb.sar/server.xml
3、.
- 第三章 Redis/SSDB+Twemproxy安装与使用
jinnianshilongnian
ssdbreidstwemproxy
目前对于互联网公司不使用Redis的很少,Redis不仅仅可以作为key-value缓存,而且提供了丰富的数据结果如set、list、map等,可以实现很多复杂的功能;但是Redis本身主要用作内存缓存,不适合做持久化存储,因此目前有如SSDB、ARDB等,还有如京东的JIMDB,它们都支持Redis协议,可以支持Redis客户端直接访问;而这些持久化存储大多数使用了如LevelDB、RocksD
- ZooKeeper原理及使用
liyonghui160com
ZooKeeper是Hadoop Ecosystem中非常重要的组件,它的主要功能是为分布式系统提供一致性协调(Coordination)服务,与之对应的Google的类似服务叫Chubby。今天这篇文章分为三个部分来介绍ZooKeeper,第一部分介绍ZooKeeper的基本原理,第二部分介绍ZooKeeper
- 程序员解决问题的60个策略
pda158
框架工作单元测试
根本的指导方针
1. 首先写代码的时候最好不要有缺陷。最好的修复方法就是让 bug 胎死腹中。
良好的单元测试
强制数据库约束
使用输入验证框架
避免未实现的“else”条件
在应用到主程序之前知道如何在孤立的情况下使用
日志
2. print 语句。往往额外输出个一两行将有助于隔离问题。
3. 切换至详细的日志记录。详细的日
- Create the Google Play Account
sillycat
Google
Create the Google Play Account
Having a Google account, pay 25$, then you get your google developer account.
References:
http://developer.android.com/distribute/googleplay/start.html
https://p
- JSP三大指令
vikingwei
jsp
JSP三大指令
一个jsp页面中,可以有0~N个指令的定义!
1. page --> 最复杂:<%@page language="java" info="xxx"...%>
* pageEncoding和contentType:
> pageEncoding:它