1. PETA Dataset
2. RAP Dataset
3. PA-100K Dataset
4. WIDER Attribute Dataset
5. Database of Human Attributes (HAT)
6. Market-1501_Attribute
7. DukeMTMC-Attribute
8. Clothing Attributes Dataset
9. Parse27k Dataset
10. RAP 2.0 Dataset
11. CRP Dataset
12. APis dataset
13. Berkeley-Attributes of People dataset
14. Deepfashion dataset
15. Video-Based PAR dataset
链接: http://mmlab.ie.cuhk.edu.hk/projects/PETA.html
PETA Dataset由多个数据集组合而成,共有65个attribute,其中,包括61个 Binary Attribute,4个 Multi-class attributes。
链接: http://rap.idealtest.org/
链接: https://drive.google.com/drive/folders/0B5_Ra3JsEOyOUlhKM0VPZ1ZWR2M
链接: http://mmlab.ie.cuhk.edu.hk/projects/WIDERAttribute.html
WIDER Attribute is a large-scale human attribute dataset. It contains 13789 images belonging to 30 scene categories, and 57524 human bounding boxes each annotated with 14 binary attributes.
The Binary Attributes are as follows :
Male, Long Hair, Sunglasses, Hat, Tshirt, longSleeve, Formal, Shorts, Jeans, Long Pants, Skirt, Face Mask, Logo, Plaid or Stripe.
链接: https://jurie.users.greyc.fr/datasets/hat.html
train set size: 3500 ∗ 27 3500*27 3500∗27, test set size: 2344 ∗ 27 2344*27 2344∗27, evaluation set size: 3500 ∗ 27 3500*27 3500∗27
attribute | label |
---|---|
female | +1 : attribute present, -1 : attribute absent, 0 : attribute not visible or ambiguous |
frontalpose | DITTO |
profilepose | DITTO |
turnedback | DITTO |
upperbody | DITTO |
standing | DITTO |
runwalk | DITTO |
crouching | DITTO |
sitting | DITTO |
armsbent | DITTO |
elderly | DITTO |
middleaged | DITTO |
young | DITTO |
teen | DITTO |
kid | DITTO |
baby | DITTO |
tanktop | DITTO |
tshirt | DITTO |
mensuit | DITTO |
longskirt | DITTO |
shortskirt | DITTO |
smallshorts | DITTO |
lowcuttop | DITTO |
swimsuit | DITTO |
weddingdress | DITTO |
bermudashorts | DITTO |
链接: https://github.com/vana77/Market-1501_Attribute
train set size: 751 ∗ 27 751*27 751∗27, test set size: 750 ∗ 27 750*27 750∗27, evaluation set size: 13115 ∗ 27 13115*27 13115∗27
attribute | representation in file | label |
---|---|---|
gender | gender | 1 : male, 2 : female |
hair length | hair | 1 : short hair, 2 : long hair |
sleeve length | up | 1 : long sleeve, 2 : short sleeve |
length of lower-body clothing | down | 1 : long lower body clothing, 2 : short |
type of lower-body clothing | clothes | 1 : dress, 2 : pants |
wearing hat | hat | 1 : no, 2 : yes |
carrying backpack | backpack | 1 : no, 2 : yes |
carrying bag | bag | 1 : no, 2 : yes |
carrying handbag | handbag | 1 : no, 2 : yes |
age | age | 1 : young, 2 : teenager, 3 : adult, 4 : old |
8 color of upper-body clothing | upblack, upwhite, upred, uppurple, upyellow, upgray, upblue, upgreen | 1 : no, 2 : yes |
9 color of lower-body clothing | downblack, downwhite, downpink, downpurple, downyellow, downgray, downblue, downgreen,downbrown | 1 : no, 2 : yes |
Smaple:
链接: https://github.com/vana77/DukeMTMC-attribute
train set size: 702 ∗ 23 702*23 702∗23, test set size: 1110 ∗ 23 1110*23 1110∗23, evaluation set size: 13115 ∗ 23 13115*23 13115∗23
attribute | representation in file | label |
---|---|---|
gender | gender | 1 : male, 2 : female |
length of upper-body clothing | top | 1 : short upper body clothing, 2 : long |
wearing boots | boots | 1 : no, 2 : yes |
wearing hat | hat | 1 : no, 2 : yes |
carrying backpack | backpack | 1 : no, 2 : yes |
carrying bag | bag | 1 : no, 2 : yes |
carrying handbag | handbag | 1 : no, 2 : yes |
color of shoes | shoes | 1 : dark, 2 : light |
8 color of upper-body clothing | upblack, upwhite, upred, uppurple, upgray, upblue, upgreen, upbrown | 1 : no, 2 : yes |
7 color of lower-body clothing | downblack, downwhite, downred, downgray, downblue, downgreen, downbrown | 1 : no, 2 : yes |
Smaple:
链接: https://purl.stanford.edu/tb980qz1002
The dataset contains 1856 images, with 26 ground truth clothing attributes collected using Amazon Mechanical Turk. All labels are arranged in the order from image 1 to 1856. Some label entries are ‘NaN’, meaning the 6 human workers cannot reach an agreement on this clothing attribute.
Details of the clothing attributes labels are shown below:
attribute | label |
---|---|
Necktie | 1 : No necktie, 2 : Has necktie |
Collar | 1 : No collar, 2 : Has collar |
Gender | 1 : Male, 2. Female |
Placket | 1 : No placket, 2 : Has placket |
Skin exposure | 1 : Low exposure, 2 : High exposure |
Wear scarf | 1 : No scarf, 2 : Has scarf |
Solid pattern | 1 : No, 2 : Yes |
Floral pattern | 1 : No, 2 : Yes |
Spotted pattern | 1 : No, 2 : Yes |
Graphics pattern | 1 : No, 2 : Yes |
Plaid pattern | 1 : No, 2 : Yes |
Striped pattern | 1 : No, 2 : Yes |
Red color | 1 : No, 2 : Yes |
Yellow color | 1 : No, 2 : Yes |
Green color | 1 : No, 2 : Yes |
Cyan color | 1 : No, 2 : Yes |
Blue color | 1 : No, 2 : Yes |
Purple color | 1 : No, 2 : Yes |
Brown color | 1 : No, 2 : Yes |
White color | 1 : No, 2 : Yes |
Gray color | 1 : No, 2 : Yes |
Black color | 1 : No, 2 : Yes |
Many (>2) colors | 1 : No, 2 : Yes |
Sleeve length | 1 : No sleeves, 2 : Short sleeves, 3 : Long sleeves |
Neckline | 1 : V-shape, 2 : Round, 3 : Other shapes |
Category | 1 : Shirt, 2 : Sweater, 3 : T-shirt, 4 : Outerwear, 5 : Suit, 6 : Tank Top, 7 : Dress |
链接: https://www.vision.rwth-aachen.de/page/parse27k
The attributes are all defined based on some binary or multinomial proposition. The annotated attributes include two orientation labels with 4 and 8 discretizations, and several binary attributes with an additional N/A state:
The examples are all annotated with the following attributes:
链接: https://drive.google.com/file/d/1hoPIB5NJKf3YGMvLFZnIYG5JDcZTxHph/view
链接: http://www.vision.caltech.edu/~dhall/projects/CRP/
链接: http://www.cbsr.ia.ac.cn/english/APiS-1.0-Database.html
链接: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/shape/poselets/
train set size: 4013 ∗ 9 4013*9 4013∗9, test set size: 4022 ∗ 9 4022*9 4022∗9
attribute | label |
---|---|
is_male | 1 : attribute present, -1 : attribute not absent, 0 : attribute unspecified. |
has_long_hair | DITTO |
has_glasses | DITTO |
has_hat | DITTO |
has_t-shirt | DITTO |
has_long_sleeves | DITTO |
has_shorts | DITTO |
has_jeans | DITTO |
has_long_pants | DITTO |
链接: http://mmlab.ie.cuhk.edu.hk/projects/DeepFashion.html
Category and Attribute Prediction Benchmark
num of images: 289222, num of attributes:1000, num of attribute type: 50
Note:
In-shop Clothes Retrieval Benchmark
num of images: 52712, num of items: 7982, num of attributes:463
Note:
Consumer-to-shop Clothes Retrieval Benchmark
num of images: 239557, num of items: 33881, num of attributes:303, num of attribute type: 18
Note:
Fashion Landmark Detection Benchmark
num of images: 123016, num of items: 33881, num of attributes:303, num of attribute type: 18
Note:
Fashion Synthesis Benchmark
num of images: 78979, num of items: 33881, num of attributes:303, num of attribute type: 18
链接: https://github.com/yuange250/MARS-Attribute
如果你看到了这篇文章的最后,并且觉得有帮助的话,麻烦你花几秒钟时间点个赞,或者受累在评论中指出我的错误。谢谢!
作者信息:
知乎:没头脑
LeetCode:Tao Pu
CSDN:Code_Mart
Github:Bojack-want-drink