【Task2 GBDT算法梳理】
一、简介:
GBDT有很多简称,有GBT(Gradient Boosting Tree), GTB(Gradient Tree Boosting ), GBRT(Gradient Boosting Regression Tree), MART(Multiple Additive Regression Tree),其实都是指的同一种算法,本文统一简称GBDT。
GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。
在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是, 损失函数是, 我们本轮迭代的目标是找到一个CART回归树模型的弱学习器,让本轮的损失函数最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。
在Adaboost算法中,我们的最终目的是通过构建弱分类器的线性组合:
来得到最终分类器。
而我们在看看加法模型:
其中,为基函数,是基函数的参数,为基函数的系数。
显然式8.6是一个加法模型。
对于加法模型,在给定训练数据及损失函数L(y, f(x))的条件下,学习加法模型f(x)就成为经验风险极小化损失函数极小化问题:
但这是一个复杂的优化问题。
前向分布算法(forward stagewise algorithm)求解这一优化问题的想法是:
因为学习的是加法模型,那如果能够从前向后,每一步只学习一个基函数及其系数,然后逐步逼近优化目标式8.14,那么就可以简化优化的复杂度。
具体的,每步只需优化如下损失函数:
于是,前向分布算法总结如下:
输入:
训练数据集T ={(x1,y1), (x2, y2), ..., (xN, yN)};损失函数L(y, f(x));基函数集{b(x; r)};
输出:
加法模型f(x)
解:
1,初始化f0(x)= 0
2,对m = 1, 2,.., M
a,极小化损失函数
得到参数βm, rm
b,更新
3,得到加法模型
这样,前向分布算法将同时求解从m=1到M的所有参数βm, 的优化问题简化为逐次求解各个βm, 的优化问题。
针对这个问题,大牛Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。
第t轮的第i个样本的损失函数的负梯度表示为
利用,我们可以拟合一颗CART回归树,得到了第t颗回归树,其对应的叶节点区域。其中J为叶子节点的个数。
针对每一个叶子节点里的样本,我们求出使损失函数最小,也就是拟合叶子节点最好的的输出值如下:
这样我们就得到了本轮的决策树拟合函数如下:
从而本轮最终得到的强学习器的表达式如下:
通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类/回归问题。区别仅仅在于损失函数不同导致的负梯度不同而已。
四、损失函数
对于分类算法,其损失函数一般有对数损失函数和指数损失函数两种:
a) 如果是指数损失函数,则损失函数表达式为
其负梯度计算和叶子节点的最佳负梯度拟合参见Adaboost原理篇。
b) 如果是对数损失函数,分为二元分类和多元分类两种,参见4.1节和4.2节。
对于回归算法,常用损失函数有如下4种:
a)均方差,这个是最常见的回归损失函数了
b)绝对损失,这个损失函数也很常见
对应负梯度误差为:
c)Huber损失,它是均方差和绝对损失的折衷产物,对于远离中心的异常点,采用绝对损失,而中心附近的点采用均方差。这个界限一般用分位数点度量。损失函数如下:
对应的负梯度误差为:
d) 分位数损失。它对应的是分位数回归的损失函数,表达式为
其中θ为分位数,需要我们在回归前指定。对应的负梯度误差为:
对于Huber损失和分位数损失,主要用于健壮回归,也就是减少异常点对损失函数的影响。
五、回归
输入是训练集样本, 最大迭代次数T, 损失函数L。
输出是强学习器f(x)
1) 初始化弱学习器
2) 对迭代轮数t=1,2,...T有:
a)对样本i=1,2,...m,计算负梯度
b)利用, 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为。其中J为回归树t的叶子节点的个数。
c) 对叶子区域j =1,2,..J,计算最佳拟合值
d) 更新强学习器
3) 得到强学习器f(x)的表达式
六、二分类,多分类
这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。
为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。
本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。
6.1 二元GBDT分类算法
对于二元GBDT,如果用类似于逻辑回归的对数似然损失函数,则损失函数为:
其中。则此时的负梯度误差为
对于生成的决策树,我们各个叶子节点的最佳负梯度拟合值为
由于上式比较难优化,我们一般使用近似值代替
除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,二元GBDT分类和GBDT回归算法过程相同。
4.2 多元GBDT分类算法
多元GBDT要比二元GBDT复杂一些,对应的是多元逻辑回归和二元逻辑回归的复杂度差别。假设类别数为K,则此时我们的对数似然损失函数为:
其中如果样本输出类别为k,则。第k类的概率的表达式为:
集合上两式,我们可以计算出第tt轮的第ii个样本对应类别ll的负梯度误差为
观察上式可以看出,其实这里的误差就是样本i对应类别l的真实概率和t−1轮预测概率的差值。
对于生成的决策树,我们各个叶子节点的最佳负梯度拟合值为
由于上式比较难优化,我们一般使用近似值代替
除了负梯度计算和叶子节点的最佳负梯度拟合的线性搜索,多元GBDT分类和二元GBDT分类以及GBDT回归算法过程相同。
七、正则化
和Adaboost一样,我们也需要对GBDT进行正则化,防止过拟合。GBDT的正则化主要有三种方式。
第一种是和Adaboost类似的正则化项,即步长(learning rate)。定义为ν,对于前面的弱学习器的迭代
如果我们加上了正则化项,则有
ν的取值范围为0<ν≤1。对于同样的训练集学习效果,较小的ν意味着我们需要更多的弱学习器的迭代次数。通常我们用步长和迭代最大次数一起来决定算法的拟合效果。
第二种正则化的方式是通过子采样比例(subsample)。取值为(0,1]。注意这里的子采样和随机森林不一样,随机森林使用的是放回抽样,而这里是不放回抽样。如果取值为1,则全部样本都使用,等于没有使用子采样。如果取值小于1,则只有一部分样本会去做GBDT的决策树拟合。选择小于1的比例可以减少方差,即防止过拟合,但是会增加样本拟合的偏差,因此取值不能太低。推荐在[0.5, 0.8]之间。
使用了子采样的GBDT有时也称作随机梯度提升树(Stochastic Gradient Boosting Tree, SGBT)。由于使用了子采样,程序可以通过采样分发到不同的任务去做boosting的迭代过程,最后形成新树,从而减少弱学习器难以并行学习的弱点。
第三种是对于弱学习器即CART回归树进行正则化剪枝。在决策树原理篇里我们已经讲过,这里就不重复了。
8.1、优点:
1) 可以灵活处理各种类型的数据,包括连续值和离散值。
2) 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。
8.2、GBDT的主要缺点:
1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。
官方文档:
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
十、应用场景
可以用于分类以及回归的问题。
十一、相关链接:
https://www.cnblogs.com/pinard/p/6140514.html