matrix norm

Matrix Norm

Given a square complex or real matrix A, a matrix norm ||A|| is a nonnegative number associated with A having the properties

1. ||A||>0 when A!=0 and ||A||=0 iff A=0,

2. ||kA||=|k|||A|| for any scalar k,

3. ||A+B||<=||A||+||B||,

4. ||AB||<=||A||||B||.

Let lambda_1, ..., lambda_n be the eigenvalues of A, then

1/(||A^(-1)||)<=|lambda|<=||A||.

(1)

The matrix p-norm is defined for a real number 1<=p<=infty and a matrix A by

||A||_p=max_(x s.t. |x|_p=1)|Ax|_p,

(2)

where |x|_p is a vector norm. The task of computing a matrix p-norm is difficult for p>1 since it is a nonlinear optimization problem with constraints.

Matrix norms are implemented as Norm[mp], where p may be 1, 2, Infinity, or "Frobenius".

The maximum absolute column sum norm ||A||_1 is defined as

||A||_1=max_(j)sum_(i=1)^n|a_(ij)|.

(3)

The spectral norm ||A||_2, which is the square root of the maximum eigenvalue of A^(H)A (where A^(H) is the conjugate transpose),

||A||_2=(maximum eigenvalue of A^(H)A)^(1/2)

(4)

is often referred to as "the" matrix norm.

The maximum absolute row sum norm is defined by

||A||_infty=max_(i)sum_(j=1)^n|a_(ij)|.

(5)

||A||_1||A||_2, and ||A||_infty satisfy the inequality

||A||_2^2<=||A||_1||A||_infty.

你可能感兴趣的:(math)