ai’, bi’分别表示 ai, bi 离散化后对应的数值。求一次最小费用流再取反即为结果
#include
#include
#include
#include
using namespace std;
#define INF 0x3f3f3f3f
const int maxn = 505;
const int N = 505;
struct Edge
{
int from,to,cap,flow,cost;
Edge(int u,int v,int ca,int f,int co):from(u),to(v),cap(ca),flow(f),cost(co){};
};
struct MCMF
{
int n,m,s,t;
vector edges;
vector G[N];
int inq[N];//是否在队列中
int d[N];//距离
int p[N];//上一条弧
int a[N];//可改进量
void init(int n)//初始化
{
this->n=n;
for(int i=0;i Q;
Q.push(s);
while(!Q.empty())
{
int u=Q.front();
Q.pop();
inq[u]--;
for(int i=0;ie.flow && d[e.to]>d[u]+e.cost)//满足可增广且可变短
{
d[e.to]=d[u]+e.cost;
p[e.to]=G[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to])
{
inq[e.to]++;
Q.push(e.to);
}
}
}
}
if(d[t]==INF) return false;//汇点不可达则退出
flow+=a[t];
cost+=d[t]*a[t];
int u=t;
while(u!=s)//更新正向边和反向边
{
edges[p[u]].flow+=a[t];
edges[p[u]^1].flow-=a[t];
u=edges[p[u]].from;
}
return true;
}
int MincotMaxflow(int s,int t)
{
int flow=0,cost=0;
while(SPFA(s,t,flow,cost));
return cost;
}
}mcmf;
int u[maxn],v[maxn],w[maxn];
int tmp[maxn<<1],pos[maxn<<1];
int main()
{
int cases,n,k;
scanf("%d",&cases);
while(cases--)
{
scanf("%d%d",&n,&k);
int id = 1; mcmf.init(2*n+10);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d",&u[i],&v[i],&w[i]);
tmp[id++] = u[i];
tmp[id++] = v[i];
}
sort(tmp+1,tmp+id);
int len = 1; int s = 0; int t; pos[len] = tmp[1];
for(int i=2;itmp[i-1]) pos[++len] = tmp[i];
//for(int i=1;i<=len;i++) printf("%d ",pos[i]); printf("\n");
t = len+1;
for(int i=0;i<=len;i++) mcmf.addedge(i,i+1,k,0);
for(int i=1;i<=n;i++)
{
int l = lower_bound(pos+1,pos+len+1,u[i])-pos-1;
int r = lower_bound(pos+1,pos+len+1,v[i])-pos-1;
//printf("%d %d\n",l,r);
mcmf.addedge(l,r,1,-w[i]);
}
int ans = mcmf.MincotMaxflow(s,t);
printf("%d\n",-ans);
}
return 0;
}