一堆特判
if(a>0 && ((a%2==0 && n>2)||(a%2==1))) putchar('1');
写成了
if(a>0 && ((a%2==0 && a>2)||(a%2==1))) putchar('1');
100pts → \to → 35pts!
我服我自己!
#include
using namespace std;
int tk,n,a,b;
int main(){
// freopen("flow.in","r",stdin);
// freopen("flow.out","w",stdout);
for(scanf("%d%d",&a,&tk);tk;--tk){
scanf("%d%d%d",&n,&a,&b);
if(n-1>a+b) putchar('0');
else if((!a)||(!b)){
a=a+b-(n-1);
if(a>0 && ((a%2==0 && n>2)||(a%2==1))) putchar('1');
else putchar('0');
}else if(b<n-1){
a-=(n-1-b);if(a>1) putchar('1');else putchar('0');
}else{
if(b>n-1){
if((b-n)%2==0 || n>2){
if((a%2==0) || (a%2==1 && a>1 && n>2)) putchar('1');
else putchar('0');
}else{
if(a%2==0 && a>1) putchar('1');
else putchar('0');
}
}else{
if(a<2) putchar('0');
else if(a%2==0 || n>2) putchar('1');
else putchar('0');
}
}
if(tk>1) putchar('\n');
}
fclose(stdin);fclose(stdout);
return 0;
}
究极找规律神题:
首先不出现在 ⌊ n i ⌋ \lfloor\dfrac ni \rfloor ⌊in⌋的数 k k k一定满足:
⌊ n ⌊ n k ⌋ ⌋ > k → n % k ≥ ⌊ n k ⌋ , k > ⌊ n ⌋ \lfloor\dfrac {n}{\lfloor\frac nk \rfloor} \rfloor>k\to n\%k\geq \lfloor\dfrac nk \rfloor,k>\lfloor\sqrt n \rfloor ⌊⌊kn⌋n⌋>k→n%k≥⌊kn⌋,k>⌊n⌋
故 k k k不出现的数的区间:
[ a i + a , a i + i − 1 ] ( 1 ≤ a < i ) [ai+a,ai+i-1](1\leq a<i) [ai+a,ai+i−1](1≤a<i)即:
[ i + 1 , 2 i − 1 ] , [ 2 i + 2 , 3 i − 1 ] , . . . , [ i 2 − 1 , i 2 − 1 ] [i+1,2i-1],[2i+2,3i-1],...,[i^2-1,i^2-1] [i+1,2i−1],[2i+2,3i−1],...,[i2−1,i2−1]
(╯▽╰)好吧还是需要打表,忽略过程直接讲规律吧:
首先把 f ( n ) f(n) f(n)序列划分成 [ ( i − 1 ) 2 , i 2 − 1 ] [(i-1)^2,i^2-1] [(i−1)2,i2−1]的段。
发现每段( x ∗ y x*y x∗y表示数 x x x重复出现 y y y次):
倒着看前 i − 1 i-1 i−1个数长这样:
i ∗ 2 , ( i + 1 ) ∗ 4 , ( i + 2 ) ∗ 6 , ( i + 3 ) ∗ 8... i*2,(i+1)*4,(i+2)*6,(i+3)*8... i∗2,(i+1)∗4,(i+2)∗6,(i+3)∗8...
是个递增的每个数出现次数按偶数次递增的等差数列( 2 , 4 , 6 , 8... 2,4,6,8... 2,4,6,8...)
倒着看后 i i i个数长这样:
i ∗ 1 , ( i + 1 ) ∗ 3 , ( i + 2 ) ∗ 5 , ( i + 3 ) ∗ 7... i*1,(i+1) *3,(i+2)*5,(i+3)*7... i∗1,(i+1)∗3,(i+2)∗5,(i+3)∗7...
是个递增的每个数出现次数按奇数次递增的等差数列( 1 , 3 , 5 , 7... 1,3,5,7... 1,3,5,7...)
吐槽:这谁发现得了啊,摔(就算发现了 O ( n ) O(n) O(n)也只有 30 p t s 30pts 30pts)
然后大力计算:
拿奇数等差数列举例:
枚举以 i i i开头的等差数列,长度为 i i i,第 j j j个数是 i + ⌊ j − 1 ⌋ i+\lfloor\sqrt{j-1}\rfloor i+⌊j−1⌋。
实话说我又化了一下式子还是没看懂std在求啥。
std:
#include
#include
#include
#include
using namespace std;
typedef __int128 LL;
const int mo=998244353;
const int inv2=499122177;
const int inv6=166374059;
const int inv4=748683265;
const int inv30=432572553;
LL l,r;
char s[100];
__int128 Read() {
__int128 x=0;
scanf("%s",s);
int len=strlen(s);
for (int i=0;i<len;i++)
x=x*10+s[i]-48;
return x;
}
int Sum(int x,int y) {
x+=y;
return (x>=mo)?x-mo:x;
}
int Sub(int x,int y) {
x-=y;
return (x<0)?x+mo:x;
}
int Mul(int x,int y) {
return (long long)x*y%mo;
}
LL Ex_Sqrt(LL x,int ty) {
LL l=0,r=2e18;
while (l<r) {
LL mid=(l+r+1)/2;
LL nowf=mid*mid;
if (ty==1) nowf-=mid+1;
else if (ty==2) nowf+=mid;
if (nowf<=x) l=mid;
else r=mid-1;
}
return l;
}
int T(int x,int ty) {
if (ty==1) return Mul(Mul(x,Sum(x,1)),inv2);
if (ty==2) return Mul(Mul(Mul(x,Sum(x,1)),Sum(Sum(x,x),1)),inv6);
if (ty==3) return Mul(Mul(Mul(x,x),Mul(Sum(x,1),Sum(x,1))),inv4);
int nowx=Sub(Mul(3,Sum(Mul(x,x),x)),1);
return Mul(Mul(Mul(x,Mul(Sum(x,1),Sum(Sum(x,x),1))),nowx),inv30);
}
namespace task1 {
int F1(LL n) {
LL nx=Ex_Sqrt(n,0)%mo;
int nown=n%mo;
int ans=Mul(nown,Mul(Sum(nown,1),nx));
ans=Sum(Sub(ans,Mul(T(nx,2),Sum(Sum(nown,nown),1))),T(nx,4));
return Mul(ans,inv2);
}
int F2(LL k) {
int nowk=Ex_Sqrt(k,0)%mo;
return Sub(Mul(k%mo,nowk),T(nowk,2));
}
int Get(LL k,LL n) {
if (k*k-k>n) return 0;
LL lx=k*k-n;
return Sub(Sum(Mul(k%mo,(k-lx+1)%mo),F2(k)),F2(lx-1));
}
int Solve(LL n) {
LL nx=Ex_Sqrt(n+1,0);
return Sum(Sum(T(nx%mo,2),F1(nx)),Get(nx+1,n));
}
}
namespace task2 {
int F1(LL n) {
LL nx=Ex_Sqrt(n,2)%mo;
int nown=n%mo;
int ans=Sum(T(nx,4),Mul(2,T(nx,3)));
ans=Sub(ans,Mul(Sum(nown,Sub(nown,2)),T(nx,2)));
ans=Sub(ans,Mul(Sum(nown,Sub(nown,1)),T(nx,1)));
ans=Sum(ans,Mul(Mul(nown,Sub(nown,1)),nx));
return Mul(ans,inv2);
}
int F2(LL k) {
LL nowk=Ex_Sqrt(k,2)%mo;
return Sub(Mul(k%mo,nowk),Sum(T(nowk,2),T(nowk,1)));
}
int Get(LL k,LL n) {
if ((k-1)*(k-1)>n) return 0;
LL lx=k*k-k-n;
return Sub(Sum(Mul(k%mo,(k-lx)%mo),F2(k-1)),F2(lx-1));
}
int Solve(LL n) {
LL nx=Ex_Sqrt(n,1);
return Sum(Sum(Sub(T(nx%mo,2),T(nx%mo,1)),F1(nx)),Get(nx+1,n));
}
}
int Solve(LL n) {
return Sum(task1::Solve(n),task2::Solve(n));
}
int t,Test;
int main() {
freopen("mex.in","r",stdin);
freopen("mex.out","w",stdout);
scanf("%d%d",&Test,&t);
while (t--) {
l=Read();
r=Read();
printf("%d\n",Sub(Solve(r),Solve(l-1)));
}
return 0;
}
题目等价于找到一条直径,且满足直径伸出去的第三条链(第三叉)最长。
出题人有个高级的叫法:三叉戟
设加叶子之前直径为 u , v u,v u,v,存在一下性质:
比较显然就不证了。
所以算法流程就是维护一条直径 ( u , v ) (u,v) (u,v)以及一个第三叉长度 m x mx mx,每次加入一个点 x x x,如果在直径里,那么将其加入直径,第三叉长度不变,否则利用 x x x到直径的路径长度来更新第三叉长度。 输出时直接输出 d i s ( u , v ) + m x − ( m x ≠ 0 ) dis(u,v)+mx-(mx\neq 0) dis(u,v)+mx−(mx̸=0)即可。
大力LCT:
std
m u l t i s e t multiset multiset维护虚儿子最长链(第三叉)
M X MX MX维护路径上最长第三叉
L M X LMX LMX维护实链根向下最长链
R M X RMX RMX用于换根时 s w a p ( L M X , R M X ) swap(LMX,RMX) swap(LMX,RMX)
#include
using namespace std;
const int N = 4e5 + 5;
int ch[N][2], S[N], n, m, x, y, fa[N], Size[N], MAXL[N], MAX[N], L, R, nowDis, MAXR[N];
bool rev[N];
multiset <int> Xs[N];
#define lc (ch[x][0])
#define rc (ch[x][1])
bool isroot(int x) {
return ch[fa[x]][1] != x && ch[fa[x]][0] != x;
}
bool dir(int x) {
return ch[fa[x]][1] == x;
}
#define Erase(x, y) x.erase(x.find(y))
int get(multiset <int> &S, int Rk) {
if(S.size() < Rk) return 0;
multiset < int > :: reverse_iterator it = S.rbegin();
for(int i = 1; i < Rk; ++ i) ++ it;
return *it;
}
void pd(int x);
void up(int x) {
pd(x);
Size[x] = Size[lc] + Size[rc] + 1;
MAX[x] = max(get(Xs[x], 1), max(MAX[lc], MAX[rc]));
MAXL[x] = max(Size[lc] + max(get(Xs[x], 1), Size[rc]), max(MAXL[lc], MAXL[rc] + Size[lc] + 1));
MAXR[x] = max(Size[rc] + max(get(Xs[x], 1), Size[lc]), max(MAXR[rc], MAXR[lc] + Size[rc] + 1));
}
void add(int x, int y, int val) {
if(val == 1) {
Xs[x].insert(MAXL[y] + 1);
up(x);
return;
}
else {
Erase(Xs[x], MAXL[y] + 1);
up(x);
return;
}
}
void rotate(int x) {
int F = fa[x], GF = fa[F], Dx = dir(x), Df = dir(F), Son = ch[x][!Dx];
if(!isroot(F)) ch[GF][Df] = x;
fa[x] = GF; fa[F] = x; if(Son) fa[Son] = F;
ch[F][Dx] = Son; ch[x][!Dx] = F;
up(F); up(x);
}
void pt(int x) {
if(!x) return;
swap(lc, rc);
rev[x] ^= 1;
swap(MAXL[x], MAXR[x]);
}
void pd(int x) {
if(rev[x]) {
pt(lc);
pt(rc);
rev[x] = 0;
up(x);
}
}
void put(int x) {
if(!isroot(x)) put(fa[x]);
pd(x);
}
void splay(int x) {
put(x);
while(!isroot(x)) {
if(isroot(fa[x])) return (void)rotate(x);
if(dir(x) == dir(fa[x])) rotate(fa[x]), rotate(x);
else rotate(x), rotate(x);
}
}
void access(int x) {
int t = 0;
while(x) {
splay(x);
if(rc) {
add(x, rc, 1);
}
if(t) {
add(x, t, -1);
}
rc = t;
up(x);
t = x, x = fa[x];
}
}
void makeroot(int x) {
access(x);
splay(x);
pt(x);
}
void link(int x, int y) {
makeroot(x); makeroot(y);
fa[x] = y;
add(y, x, 1);
pd(y);
}
//void cut(int x, int y) {
// makeroot(x);
// access(y); access(x);
// add(x, y, -1);
//}
int query(int x, int y) {
makeroot(x);
access(y);
splay(y);
return max(Size[y] + MAX[y] - 2, Size[y] - 1);
}
int Qdis(int x, int y) {
makeroot(x);
access(y);
splay(y);
return Size[y] - 1;
}
void re(int x, int y, int w) {
int dA = Qdis(x, y), dB = Qdis(x, w), dC = Qdis(y, w);
L = x, R = y;
if(dB > dA) L = x, R = w, dA = dB;
if(dC > dA) L = w, R = y, dA = dC;
}
int main() {
freopen("forest.in","r",stdin);
freopen("forest.out","w",stdout);
int t; cin >> t;
MAXL[0] = MAXR[0] = MAX[0] = -1e9;
cin >> n;
up(1);
L = 1, R = 1, nowDis = 0;
for(int i = 2; i <= n; ++ i) {
up(i);
int x; scanf("%d", &x); x ^= nowDis;
link(x, i);
re(L, R, i);
printf("%d\n", nowDis = query(L, R));
}
}
总结
总体来说T1,3都在正常难度范围之内。
也就是说把会做的能做的部分都拿满成绩已经不错了——
然而T1一个字母之差(过了大样例就跑了)WA了65pts。
全程肝T2导致T3没有时间仔细思考…
实际上T2花再多时间(即使把结论推出来了)得分上限也是30,不如看一下一看就很传统可得分的数据结构T3…
主要问题在于时间分配和代码稳定性。