- YOLOv11改进,YOLOv11检测头融合RepConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等任务
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉
摘要作者提出了一种简单而强大的卷积神经网络架构,其推理阶段采用与VGG类似的网络体结构,仅由一堆3x3卷积和ReLU组成,而训练阶段的模型具有多分支拓扑。这种训练阶段和推理阶段架构的解耦通过结构重参数化技术实现,因此我们将该模型命名为RepVGG。#理论介绍RepConv通过将多个卷积操作合并成一个卷积操作来优化计算的。首先在训练过程中使用多种操作(如多个卷积层、跳跃连接等)来提高模型的表达能力和
- 工业场景将成为AI大模型的重要战场!零基础入门AI大模型,看这篇就够了!
大模型扬叔
人工智能工业多模态大模型
前言2024年,各大公司推出强大理解能力的多模态大模型,将引领人工智能(AI)技术创新和应用,工业场景将成为多模态大模型的最佳实践场地。随着GPT-4o、Gemini1.5Pro、LLaVA1.6的发布,基于Transformer架构和海量数据训练的多模态大模型再次点燃通用人工智能(AGI),其对文本、图像等多模态输入的支持和强大的理解能力也象征着人工智能迈向通用人工智能(AGI)的新阶段。随着工
- JVM加载
影࿐ེ
jvm
JVM(Java虚拟机)并不是在工程启动时就将所有类都加载到内存中,而是采用按需加载的方式,即在需要使用某个类时才会加载该类。JVM的类加载机制包括了加载、验证、准备、解析和初始化五个阶段。当Java程序运行时,JVM会根据需要,通过类加载器查找并加载类的字节码数据。这些数据可以来源于本地文件系统、网络、jar包等多种途径。加载完成后,JVM会将类的二进制数据转换成方法区内部的数据结构,并生成一个
- 通俗易懂之广义加性模型GAM时序预测(pyGAM)
智识小站
可解释机器学习python
广义加性模型(GAM)在时间序列预测中是一种强大的工具,能够捕捉数据中的非线性趋势和复杂模式。本文将详细介绍如何在Python中实现广义加性模型进行时间序列预测,包括所需的库、数据预处理、模型构建、训练以及评估。如果这篇文章对你有一点点的帮助,欢迎点赞、关注、收藏、转发、评论哦!我也会在微信公众号“智识小站”坚持分享更多内容,以期记录成长、普及技术、造福后来者!一、GAM在时间序列中的应用时间序列
- 机器视觉算法与边缘计算:打造移动终端上的智能“慧眼”
matlab_python22
计算机视觉
机器视觉算法与边缘计算:打造移动终端上的智能“慧眼”边缘计算的背景数据量激增与实时性需求:随着物联网的快速发展,大量智能设备接入网络,产生的数据量呈爆发式增长。传统云计算模式在处理这些海量实时数据时,面临延迟高、带宽压力大等问题,无法满足如自动驾驶、远程医疗等对实时性要求极高的应用场景的需求。云计算的局限性:云计算虽然提供了强大的计算和存储能力,但在数据传输过程中存在时间延迟,且数据集中存储在云端
- 工业大模型市场图谱:53个工业大模型全面梳理
大模型常客
人工智能agiai大模型ai大模型大模型应用大模型就业
工业场景要求严谨、容错率低,核心业务场景对模型准确率的要求达到95%以上、对幻觉的容忍率为0,因此通用基础大模型的工业知识往往不足以满足工业场景的应用需求。根据沙丘智库发布的《2024年中国工业大模型应用跟踪报告》,工业大模型是指在通用基础大模型(例如文心一言、通义千问等)的基础上,结合行业&场景数据进行预训练和微调,并进行模型压缩(裁剪、蒸馏等)所形成的大模型,包括通用工业大模型、行业大模型以及
- 《现代CSS技术应用与实践》小册完结啦!
历时125天,《现代CSS技术应用与实践》小册迎来了完结,总篇数40篇,约11万字。后续还会继续更新,欢迎订阅支持我。《现代CSS技术应用与实践》是一本专注于现代CSS技术应用与实践的指导手册。小册旨在帮助读者深入理解现代CSS新特性的概念、原理和应用,掌握现代CSS技术的最新进展和实践经验,从而提升网页设计和开发的技能。小册内容涵盖现代CSS的基础知识、CSS嵌套及作用域、CSS布局技术与技巧、
- NPM 包开发与优化全面指南
前言Hey,我是Immerse系列文章首发于【Immerse】,更多内容请关注该网站转载说明:转载请注明原文出处及版权声明!1.理解NPM包的结构1.1package.json文件:包的核心package.json文件是NPM包的中央配置,定义了包的各个方面,从基本元数据到复杂的发布配置。{"name":"my-awesome-package","version":"1.0.0","descrip
- Java 8 新特性 Stream
javastream
什么是Stream?Stream(流)是一个来自数据源的元素队列并支持聚合操作元素队列数据是以一系列元素的形式存在的,按照某种顺序排列,形成一个队列。在流的概念中,这些元素通常是连续到达的,可以逐个处理,而不必一次性加载整个数据集到内存中。数据源流的来源。可以是集合,数组,I/Ochannel,产生器generator等。聚合操作对一系列元素执行计算以生成单个汇总值的过程。例如,计算流中所有元素的
- 透过生活小故事,轻松理解大模型开发的五种核心方法
java
大家好,我是大圣,今天聊一下大模型开发的几种方法。大模型开发常用方法前言人工智能的世界听起来复杂神秘,但其实它与我们的日常生活有着许多相似之处。即使你对大模型开发一无所知,也能通过生活中的简单故事,理解其中的奥秘。本文将以贴近生活的五个场景,通俗易懂地讲解大模型开发中的五种核心方法:提示词工程和外部函数、Agent设计、RAG设计(检索增强生成)、微调以及预训练。让我们一同走进这些故事,揭开大模型
- 基于LSTM的空气污染情况预测与可视化平台设计与实现
QQ346127357
javaweblstm人工智能rnn
一、选题来源及意义(一)选题来源改革开放以来,中国经济取得了举世瞩目的伟大成就。随着城市化进程的加快和工业发展的加速,空气污染问题已经成为影响我国城市居民生活质量的重要因素。但与此同时,以高能耗和高排放为代价的发展模式也给中国的环境治理带来了严峻挑战[1]。空气污染不仅对环境造成破坏,还对人类健康产生严重影响[2]。给人们的生产生活带来极大的困扰。现阶段,我国城市高度重视环境污染治理工作,并采取相
- Python 网络爬虫高级教程:分布式爬取与大规模数据处理
Milk夜雨
pythonpython爬虫网络
经过基础爬虫和进阶爬虫的学习,我们已经掌握了爬虫的基本原理、动态内容处理及反爬机制的应对。然而,当我们面对海量数据或需要高效爬取多个站点时,分布式爬虫和数据存储、处理能力就显得尤为重要。本篇博客将带你迈向网络爬虫的高级阶段,学习分布式爬取、大规模数据处理以及性能优化。一、分布式爬虫的概念1.什么是分布式爬虫?分布式爬虫是指通过多个节点协作完成大规模网页爬取任务的爬虫架构。它能有效解决以下问题:单台
- AI绘画工具介绍
编程小郭
ai作画
市面上AI绘画工具众多,它们利用深度学习和图像处理技术,为用户提供了丰富的创作体验和可能性。以下是对几款主流AI绘画工具的详细介绍及横向对比:一、主流AI绘画工具介绍Midjourney简介:Midjourney是一个独立的研究实验室,专注于人工智能绘图,被广泛应用于设计、艺术创作、广告制作等领域。特点:以其强大的图像生成能力和跨界融合的创新特点著称,能够根据文本描述和视觉输入生成兼具故事性与视觉
- idea大小写转换快捷键,及设置快捷转换格式
小可乐-我一直在
intellij-ideajavaide
idea给用户提供了大小写快速转换的快捷键shift+Alt+u,贴心的idea还给提供了7种转换方式,我一般只用a_bc转驼峰aBc本来挺好用的但每次要按快捷键5次才能达到我的效果,所以请看设置图:只勾选两个,保存后就只会在这两种格式之间互相转换了
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- Windows 蓝牙驱动开发-蓝牙设备栈
程序员王马
Windows蓝牙驱动开发windows驱动开发
蓝牙设备栈蓝牙驱动程序堆栈包含Microsoft为蓝牙协议提供支持的核心部分。有了这个堆栈,已启用蓝牙的设备可以彼此定位并建立连接。在此类连接中,设备可以通过各种应用程序交换数据并彼此交互。下图显示了蓝牙驱动程序堆栈中的模块,以及WindowsVista及更高版本中不包含的可能的自定义用户模式和内核模式驱动程序。这些自定义驱动程序称为配置文件驱动程序。用户模式用户模式应用程序:通过已发布的API访
- 汇编 DA A十进制调整指令
又又(づ ●─● )づ
开发语言
二进制加法指令不能完全适用于BCD码十进制的加法运算,故应对压缩的BCD码的加法结果需要进行有条件的修正。出错原因及调整方法BCD码(4位二进制编码)共有十六个编码,但只用了其中的10个,剩余六个就没有用到。而这六个没有用到的编码为无效编码。故1位BCD码加法运算出错的情况有两种:1)相加结果大于9无进位,及已经进入无效编码区;2)相加结果有进位,及已经跳过无效编码区;无论哪一种出错情况,都是因为
- Optocon光纤温度传感器:精确、耐用、高效的温度监测解决方案
欣佰特cnbestec
网络人工智能
在工业、医疗和科研界的应用中,Optocon光纤温度传感器因其高精度测量、耐高温能力及响应速度和持久的使用寿命等关键特点,赢得了认可和使用。高精度测量:数据可靠性的保证Optocon光纤温度传感器采用先进的光纤技术和高质量材料,实现了±0.2K的高精度测量。这一精确度在精密温度控制应用中尤为重要,如实验室研究、工业过程监控等。Optocon光纤温度传感器的精确测量能力,为用户提供了可靠的数据支持,
- 一款低功耗BLE5.0蓝牙透传模块---MG-LINK Mini
EVERSPIN
蓝牙模块蓝牙透传模块BLE
蓝牙透传模块是基于蓝牙芯片的基础及目前物联网数据传输的市场需求研发推出的,在产品性能和使用便捷性上更具优势,且目前市场上的蓝牙透传模块基本都支持二次开发,既能满足产品智能化的功能性需求,也可以有效缩短产品研发周期,因此多数企业在进行产品智能化升级的时候会优先选择蓝牙透传模块。MG-LINKMini是一款低功耗、高可靠性、自带PCB天线的BLE蓝牙透传模块。模块上电启动后会自动进行广播,移动设备的A
- 什么是AI显卡,英伟达与AMD显卡的全面对比
wit_@
人工智能python算法deeplearning大数据网络
什么是AI显卡?AI显卡是专门为人工智能计算任务设计和优化的图形处理器(GPU)。相比传统显卡,AI显卡具备更强的计算能力、更高的并行处理效率以及针对深度学习、数据科学等领域的特殊硬件支持。在人工智能领域,尤其是深度学习中,训练和推理任务需要处理大量的矩阵运算,这正是GPU擅长的领域。AI显卡通过高度并行的架构,可以显著提升训练速度和模型性能,同时降低功耗和延迟。常见的AI显卡用途包括:深度学习模
- 从零开始的 AI Infra 学习之路
SSS不知-道
MLSys人工智能深度学习pytorch
从零开始的AIInfra学习之路文章目录从零开始的AIInfra学习之路一、概述二、AI算法应用2.1机器学习2.2深度学习2.3LLM三、AI开发体系3.1编程语言四、AI训练框架&推理引擎4.1PyTorch4.2llama.cpp4.3vLLM五、AI编译&计算架构5.1CUDA5.2CANN六、AI硬件&体系结构6.1INVIDIAGPU6.2AscendNPU一、概述AIInfra(AI
- 使用vue3实现语音交互的前端页面
张正栋
交互前端
代码地址:https://github.com/ZZD3627/my-third-vue.git需求1.前端实现录音并将音频传到通过http请求将音频传递到后端2.基于后端识别的语音及后端返回的内容进行语音沟通实现1.使用MediaRecorder在前端使用录音功能2.使用SpeechSynthesis实现将后端传来的文字进行播放其中一个页面的代码:import{ref,onMounted}fro
- python 特征选择方法_【来点干货】机器学习中常用的特征选择方法及非常详细的Python实例...
Blair Long
python特征选择方法
花费了很长时间整理编辑,转载请联系作者授权,违者必究。特征选择(Featureselection)是在构建预测模型的过程中减少输入变量的一个过程。它是机器学习中非常重要的一步并在很大程度上可以提高模型预测精度。这里我总结了一些机器学习中常见的比较有用的特征选择方法并附上相关python实现code。希望可以给大家一些启发。首先,我们为什么要进行特征选择呢?它有以下几个优点:减少过拟合:冗余数据常常
- 【深度学习】Huber Loss详解
小小小小祥
深度学习人工智能算法职场和发展机器学习
文章目录1.HuberLoss原理详解2.Pytorch代码详解3.与MSELoss、MAELoss区别及各自优缺点3.1MSELoss均方误差损失3.2MAELoss平均绝对误差损失3.3HuberLoss4.总结4.1优化平滑4.2梯度较好4.3为什么说MSE是平滑的1.HuberLoss原理详解HuberLoss是一种结合了MSE(均方误差)与MAE(平均绝对误差)的损失函数,旨在克服两者的
- 【YOLOV8】YOLOV8模型训练train及参数详解
小小小小祥
YOLO
介绍训练深度学习模型涉及为其提供数据并调整其参数,以便它能够做出准确的预测。UltralyticsYOLOv8的训练模式专为有效、高效地训练目标检测模型而设计,充分利用现代硬件的能力。本指南旨在涵盖使用YOLOv8强大功能集训练自定义模型所需的所有细节,帮助你快速入门。为什么选择UltralyticsYOLO进行训练?高效性:无论是单GPU设置还是跨多个GPU扩展,都能充分利用你的硬件。多功能性:
- 【YOLOV8】目标检测任务中应该如何选择YOLOV8n/s/m/l/x模型及输入尺寸大小
小小小小祥
YOLO目标检测人工智能
问题描述:YOLOV8作为目前主流的深度学习网络,支持图像分类、目标检测、实例分割、姿态检测、旋转目标检测等功能。对于目标检测任务官方提供了n/s/m/l/x五个模型,我们在使用YOLOV8模型进行自己任务训练时,应该如何选择YOLOV8的模型以及输入尺寸大小呢?YOLOV8官网:https://github.com/ultralytics/ultralyticsYOLOV8n/s/m/l/x信息
- DynamicDatasource动态数据源实现及使用
m0_74825074
java
文章目录动态数据源DynamicDatasource简介源码分析ThreadLocal和AbstractRoutingDataSourceDynamicRoutingDataSourceDynamicDatasource快速开始项目结构Maven依赖application.yml配置文件sql脚本动态加载数据源动态切换数据源手动实现核心类`DataSourceContextHolder`核心类`D
- 微信小程序之单选框
ch_s_t
微信小程序微信小程序notepad++小程序
微信小程序中的单选框(Radio)是一个常用的输入组件,用于在多个选项中进行选择。常见的应用场景有性别选择、选项过滤、问卷调查等。本文将介绍小程序中单选框的特点和作用及相应示例。一、单选框的特点和作用特点:单一选择:用户只能选择一个选项,适合于互斥项的选择。分组显示:单选框通常是一个选项组的形式,多个单选框的组合,一般会有相同的name属性,以便在选择时实现互斥效果。简洁明了:界面简洁,有助于用户
- 【学习总结|DAY027】JAVA操作数据库
123yhy传奇
学习java数据库mybatisspringboot
在后端开发中,Java操作数据库是核心技能。本文将详细介绍JDBC、MyBatis及SpringBoot配置文件相关知识,并给出实用代码示例。一、JDBC(JavaDataBaseConnectivity)(一)简介JDBC是sun公司定义的操作关系型数据库的API规范。它如同一个标准接口,各数据库厂商实现此接口并提供驱动jar包。例如,我们在使用MySQL数据库时,需引入mysql-connec
- 深入解读ChatGPT的工作原理及底层逻辑
NAR_鱼丸
ChatGPT程序人生
ChatGPT的工作原理和底层逻辑可以从多个方面进行解读,主要包括其基本原理、核心技术、训练过程以及应用能力。工作原理涉及了深度学习模型、自然语言处理技术和文本生成算法等多个方面。通过预训练和微调,模型能够理解语言的语法和语义,并能够根据上下文生成符合语境的文本回复。基本原理ChatGPT是一种基于自然语言处理(NLP)和深度学习技术的聊天机器人。其基本原理是使用大量文本数据来训练深度神经网络模型
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi