hive 3.x 功能介绍

阅读更多
这个版本中有什么新东西:Apache Hive
hvie 3.1包括物化视图的分区,这可以提高查询响应能力和维护修复。



工作量管理

使用工作负载管理,您可以配置谁使用资源,可以使用多少以及Hive响应资源请求的速度。管理资源对于Hive LLAP(低延迟分析处理)至关重要,尤其是在多租户环境中。使用工作负载管理,您可以创建资源池并分配资源以满足可用性需求,并防止对这些资源的争用。工作负载管理改进了在Hive LLAP上运行的查询的并行查询执行和集群共享,还提高了非LLAP查询的性能。工作负载管理可减少大型集群中的资源不足。您可以使用Hive查询语言在命令行上实现工作负载管理。

事务改进

成熟版本的ACID(原子性,一致性,隔离性和持久性)事务处理和低延迟分析处理(LLAP)在Hive和HDP 3.0中发展。增强ACID表作为HDP 3.0中的默认表类型,没有性能或操作过载。使用ACID表操作有助于遵守GDPR(通用数据保护法规)要求被遗忘的权利。通过更强的事务保证和更简单的SQL命令语义,简化了应用程序开发和操作。您不需要存储ACID表,因此维护更容易。您不再需要在Hive表中执行ACID删除操作。

物化物化

随着事务语义的改进,出现了高级优化,例如物化视图重写和自动查询缓存。通过这些优化,您可以部署新的Hive应用程序类型。由于多个查询经常需要相同的中间汇总或连接表,因此可以通过预先计算和将中间表缓存到视图中来避免代价高昂的重复查询部分共享。查询优化器自动利用预先计算的缓存,从而提高性能。例如,物化视图可提高商业智能(BI)和仪表板应用程序中的连接和聚合查询的速度。

Kafka主题的直接,低延迟Hive查询

可以在单个命令中从Kafka主题在Hive中创建Druid表。此功能通过消除Kafka交付和查询德鲁伊之间的数据处理步骤,简化了对Kafka数据的查询。


Spark与Hive集成

您可以使用Hive 3从Apache Spark和Apache Kafka应用程序查询数据,而无需解决方法。Hive Warehouse Connector支持从Spark读取和编写Hive表。

Hive安全性改进

Apache Ranger默认保护Hive数据。为满足客户对并发性改进的需求,ACID对GDPR(通用数据保护法规)的支持,渲染安全性和其他功能,Hive现在严格控制文件系统和计算机内存资源。通过额外的控制,Hive可以更好地优化共享文件和YARN容器中的工作负载。Hive控制文件系统越多,Hive就越能保护数据安全。

查询结果缓存

Hive过滤并缓存类似或相同的查询。Hive不会重新计算未更改的数据。当数百或数千名BI工具和Web服务用户查询Hive时,缓存重复查询可以大大减轻负载。

信息模式数据库

将Hive服务添加到集群时,Hive会从JDBC数据源创建两个数据库:information_schema和sys。所有Metastore表都映射到您的表空间,并在sys中可用。information_schema数据显示系统的状态,类似于sys数据库数据。您可以使用SQL标准查询来查询information_schema,这些查询可以从一个DBMS移植到另一个DBMS。

你可能感兴趣的:(hive,hive3.x新特性)