数据结构和算法分析之排序算法--选择排序(堆排序)

选择排序–堆排序

堆排序是一种树形选择的排序,是对直接选择排序的有效改进。
(直接选择排序:第一次选择最小值,与第一位数交换,再从后面选择最小的,和第二位数交换……直至排序结束,共n-1次)

基本思想:
堆的定义如下:具有n个元素的序列(k1,k2,…,kn),当且仅当满足:
这里写图片描述
时称之为堆。由堆的定义可以看出,堆顶元素(第一个元素)必须为最小项(或最大项)。
若一一维数组存储一个堆,则堆对应一颗完全二叉树,且所有非叶结点的值均不大于(不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大的)。如下:
(a)大顶堆序列:(96, 83,27,38,11,09)
(b)小顶堆序列:(12,36,24,85,47,30,53,91)
数据结构和算法分析之排序算法--选择排序(堆排序)_第1张图片

初始时把要排序的n个数的序列看作是一颗顺序存储的二叉树,调整他们的存储序列,使之成为一个堆,将堆顶元素输出,得到n个元素中最小(或者最大)的元素,这时堆的根结点的数最小(或者最大)。然后对后面(n-1)个元素重新调整使之成为堆,再次输出堆顶元素。依次类推,直到只有两个结点的堆,并对它们做比较,最后输出n个结点的有序序列。上述过程称之为堆排序。
因此,实现堆排序需要解决两个问题:
1、如何将n个待排序的数建成堆;
2、输出堆顶元素后,怎么调整剩余的n-1个元素,使之成为新堆;

下面就针对这两个问题进行讨论:
首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。
1)设有m个元素的堆,输出堆顶元素后,剩下m-1个元素。将堆底元素送入堆顶(最后一个元素与堆顶进行交换),此时堆被破坏(根结点不满足堆的性质)。
2)将根结点与左右子树中较小的元素进行交换。
3)若与左子树交换:如果左子树堆被破坏,即左子树的堆被破坏,即左子树的根结点不满足堆的性质,重复方法(2);
4)若与右子树交换,如果右子树堆被破坏,即右子树的根结单不满足堆的性质。重复方法(2);
5)继续对不满足堆性质的子树进行上述交换操作,直至堆被建成。
称这个自根结点到叶子结点的调整过程为筛选,如下图:
数据结构和算法分析之排序算法--选择排序(堆排序)_第2张图片

再讨论对n个元素初始建堆的过程。
建堆方法:堆初始序列建堆的过程,就是一个反复筛选的过程。
1)n个结点的完全二叉树,则最后一个结点是第[n/2]个结点的子树。
2)筛选从第[n/2]个结点为根的子树开始,该子树成为堆。
3)之后向前依次对各节点为根的子树进行筛选,使之成为堆,直到根结点。

如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)
数据结构和算法分析之排序算法--选择排序(堆排序)_第3张图片

算法的实现:
从算法描述来看,堆排序需要两个过程,一是建立堆,而是堆顶与堆的最后一个元素交换位置的筛选过程。所以堆排序两个函数组成。
1)建堆的渗透函数;
2)反复调用渗透函数实现排序的函数;

代码如下:

#include
using namespace std;

void print(int a[], int n){  
    for(int j= 0; j"  ";  
    }  
    cout</** 
 * 已知H[s…m]除了H[s] 外均满足堆的定义 
 * 调整H[s],使其成为大顶堆.即将对第s个结点为根的子树筛选,  
 * 
 * @param H是待调整的堆数组 
 * @param s是待调整的数组元素的位置 
 * @param length是数组的长度 
 * 
 */  
//筛选的过程就是把序列变成堆序列--大顶堆或小顶堆
void HeapAdjust(int H[],int s, int length)  
{  
    int tmp  = H[s];  
    int child = 2*s+1; //左孩子结点的位置。(i+1 为当前调整结点的右孩子结点的位置)  
    while (child < length) {  
        if(child+1 1]) { // 如果右孩子大于左孩子(找到比当前待调整结点大的孩子结点)  
            ++child ;  //比较左右子孩子哪个较大,取大的值。
        }  
        if(H[s]// 如果较大的子结点大于父结点  --结点取较大的值
            H[s] = H[child]; // 那么把较大的子结点往上移动,替换它的父结点  
            s = child;       // 重新设置s ,即待调整的下一个结点的位置  
            child = 2*s+1;  
        }  else {            // 如果当前待调整结点大于它的左右孩子,则不需要调整,直接退出  
             break;  
        }  
        H[s] = tmp;         // 当前待调整的结点放到比其大的孩子结点位置上  
    }  
    print(H,length);  
}  


/** 
 * 初始堆进行调整 
 * 将H[0..length-1]建成堆 
 * 调整完之后第一个元素是序列的最小的元素 
 */  
void BuildingHeap(int H[], int length)  
{   
    //最后一个有孩子的节点的位置 i=  (length -1) / 2  
    //从最后一个结点开始筛选,筛选个数是树的一半
    for (int i = (length -1) / 2 ; i >= 0; --i)  
        HeapAdjust(H,i,length);  
}  
/** 
 * 堆排序算法 
 互换元素
 */  
void HeapSort(int H[],int length)  
{  
    //初始堆  
    BuildingHeap(H, length);  
    //从最后一个元素开始对序列进行调整  
    for (int i = length - 1; i > 0; --i)  
    {  
        //交换堆顶元素H[0]和堆中最后一个元素  
        int temp = H[i]; H[i] = H[0]; H[0] = temp;  
        //每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整  
        HeapAdjust(H,0,i);  
  }  
}   
int main(){  
    int H[10] = {3,1,5,7,2,4,9,6,10,8};  
    cout<<"初始值:";  
    print(H,10);  
    HeapSort(H,10);  
    //selectSort(a, 8);  
    cout<<"结果:";  
    print(H,10);  

    system("pause");
    return 0;

}  

效率分析–堆排序

堆排序的时间复杂度,主要在初始化堆过程和每次选取最大数后重新建堆的过程。
1、初始化建堆过程时间:O(n);
推算过程,参考链接:http://blog.csdn.net/yuzhihui_no1/article/details/44258297
2、更改堆元素后重建堆时间:O(nlogn)
推算过程:
重建堆的过程需要循环n-1次,每次都是从根节点往下循环查找,所以每一次时间是logn,总时间为:logn(n-1)=nlogn-logn;

综上所述,时间复杂度为:O(nlogn)。


本文资料和代码参照:http://blog.csdn.net/hguisu/article/details/7776068/
特别鸣谢~

你可能感兴趣的:(数据结构)