- Proto文件从入门到精通——现代分布式系统通信的基石(含实战案例)
筏.k
gRPCc++rpc服务器
gRPC核心技术详解:Proto文件从入门到精通——现代分布式系统通信的基石(含实战案例)更新时间:2025年7月18日️标签:gRPC|ProtocolBuffers|Proto文件|微服务|分布式系统|RPC通信|接口定义文章目录前言一、基础概念:Proto文件究竟是什么?1.什么是Proto文件?2.传统通信vsProto通信二、语法详解:Proto文件的构成要素1.基本语法结构2.数据类型
- 【橘子分布式】Thrift RPC(编程篇)
当年明日
分布式分布式rpc网络协议
一、简介之前我们研究了一下thrift的一些知识,我们知道他是一个rpc框架,他作为rpc自然是提供了客户端到服务端的访问以及两端数据传输的消息序列化,消息的协议解析和传输,所以我们今天就来了解一下他是如何实现这些功能,并且如何在实际代码中使用。我们需要搭建环境。1.安装Thrift作用:把IDL语言描述的接口内容,生成对应编程语言的代码,简化开发。我们已经介绍了在mac如何使用brew安装了。2
- 分布式弹性故障处理框架——Polly(1)
1前言之服务雪崩在我们实施微服务之后,服务间的调用变得异常频繁,多个服务之前可能存在互相依赖的关系,当某个服务出现故障或者是因为服务间的网络出现故障,导致服务调用的失败,进而影响到某个业务服务处理失败,服务依赖的故障可能导致级联崩溃,如一个微服务不可用拖垮整个系统。【服务雪崩】服务雪崩通常遵循“从局部故障到全局崩溃”的递进路径,可拆解为以下步骤:初始故障某个基础服务(如数据库、缓存、第三方API)
- 插板式系统的“生命线“:EtherCAT分布式供电该如何实现?
ZLG 致远电子
iot
在ZIO系列插板式模组系统中,EtherCAT分布式供电如同设备的血液循环网络,其供电稳定性直接决定系统可靠性。本文将从电流计算到电源扩展,为您讲解EtherCAT分布式供电该如何实现。ZIO系列插板式模组的电源介绍ZIO系列插板式I/O模块是ZLG开发的可灵活设计的远程I/O扩展模块。该系列产品由耦合器、数字I/O、电机驱动、模拟量、电源等功能模块组成。ZIO系列可以通过定制化的底板集成各类接口
- GPU网络运维
一行代码通万物
网络运维GPU
一、GPU网络架构与核心技术GPU集群网络需适配分布式训练中“多节点数据同步”(如all-reduce、broadcast)的高频、大流量需求,主流技术方案及特点如下:网络技术核心优势适用场景运维重点InfiniBand低延迟(~1us)、高带宽(400Gb/s)、原生RDMA支持超大规模集群(≥1000节点)、千亿参数模型训练子网管理、固件兼容性、链路健康RoCE(RDMAoverConverg
- 达梦分布式集群DPC_DPC线程深度解析_yxy
yxy___
达梦分布式集群分布式线程DPC
达梦分布式集群DPC_DPC线程深度解析1.DPC专用线程体系1.1DPC线程池分类1.1.1底层公共线程池1.1.2上层专用线程池1.2线程管理模式1.2.1生产者-消费者模式1.2.2领导者跟随者模式2.DPC线程相关视图2.1THREADS2.2DPC_STASK_THRD2.3关键列解释3.DPC线程管理监控3.1sql卡顿,找出关键线程分析3.2完整sql执行示例1.DPC专用线程体系文
- Redis面试精讲 Day 3:Redis持久化机制详解
在未来等你
Redis面试专栏Redis面试题持久化RDBAOF数据库缓存
【Redis面试精讲Day3】Redis持久化机制详解文章标签Redis,面试题,持久化,RDB,AOF,数据库,缓存,后端开发,分布式系统文章简述本文是"Redis面试精讲"系列第3天内容,深入解析Redis持久化机制这一面试高频考点。文章从基础概念出发,详细剖析RDB和AOF两种持久化方式的实现原理、触发机制和优缺点对比,提供多语言客户端操作示例和性能测试数据。针对"如何选择持久化策略"、"A
- Hadoop与云原生集成:弹性扩缩容与OSS存储分离架构深度解析
Hadoop与云原生集成的必要性Hadoop在大数据领域的基石地位作为大数据处理领域的奠基性技术,Hadoop自2006年诞生以来已形成包含HDFS、YARN、MapReduce三大核心组件的完整生态体系。根据CSDN技术社区的分析报告,全球超过75%的《财富》500强企业仍在使用Hadoop处理EB级数据,其分布式文件系统HDFS通过数据分片(默认128MB块大小)和三副本存储机制,成功解决了P
- 分布式系统中优化ELK日志采集性能
Alex艾力的IT数字空间
elk微服务中间件架构ux安全性测试可用性测试
架构设计、组件调优、资源分配等多维度入手一、架构优化:分布式与解耦设计分层采集与缓冲Filebeat轻量级采集:在每台服务器部署Filebeat替代Logstash作为日志收集器,降低资源占用(CPU/内存减少70%以上)。引入缓冲队列:通过Redis或Kafka作为日志缓冲池,缓解Logstash或Elasticsearch的突发流量压力,避免数据丢失(如Logstash异常时Redis暂存数据
- Redux-thunk:10行代码重构异步控制权
止观止
#React核心原理深度剖析reactreduxreact-thunk状态管理前端
redux-thunk作为Redux生态中最精简的异步处理中间件,其核心价值源于对“函数型Action”的设计突破。这种范式通过将传统的静态Action对象转化为动态可执行函数,为Redux的单向数据流注入了异步控制能力,成为中小型项目异步管理的首选方案。⚙️一、核心设计:函数型Action(ActionasFunction)传统ReduxAction本质是携带{type,payload}的静态数
- Agent架构解析及分布式Agent协作方案
来源:AI大模型应用实践AIAgent(智能体)系统发展迅猛,且关注点已经不再局限在Agent的规划推理等基本能力,智能体系统在扩展性、互操作、安全性等工程化方面的挑战也越来越引起重视,比如最近的MCP和A2A。上一篇我们介绍了A2A,今天接着再聊聊分布式Agent系统的话题。Agent模式架构解析Agent有效减少人类工作总量,人与AI协作才是最终形态。人类与AI交互可大致分为三种模式。Embe
- Redis 深度解析:从核心原理到生产实践
Pasregret
缓存redis数据库缓存
Redis深度解析:从核心原理到生产实践一、Redis核心定位与数据结构1.核心能力矩阵深度解析Redis作为高性能内存数据库,核心能力覆盖缓存、数据存储、消息中间件等场景,其设计哲学围绕速度优先、内存高效、功能丰富展开:内存存储特性纯内存操作:基于内存寻址的O(1)复杂度数据操作,单节点QPS可达10万+持久化方案:RDB(快照)与AOF(日志)双模式,支持数据持久化与故障恢复单线程模型:基于事
- 深入解析 vLLM 分布式推理与部署策略
在当今人工智能快速发展的时代,大型语言模型(LLM)的推理和部署面临着诸多挑战,尤其是当模型规模日益庞大时,如何高效地利用硬件资源成为关键问题。vLLM作为一种强大的工具,为分布式推理和部署提供了多种策略,本文将详细探讨其相关技术和应用场景,希望能对您提供有价值的参考。分布式推理策略的选择在开始分布式推理和部署之前,明确何时采用分布式推理以及可选的策略至关重要。1.单GPU推理:如果模型能够在单个
- RabbitMQ深度解析:从核心概念到实战应用
JouJz
rabbitmqruby分布式
RabbitMQ深度解析:从核心概念到实战应用引言:现代分布式系统的通信枢纽在当今复杂的分布式系统架构中,消息队列已成为不可或缺的基础组件。作为最受欢迎的开源消息代理之一,RabbitMQ以其可靠性、灵活性和跨平台能力赢得了广泛青睐。本文将全面剖析RabbitMQ的核心机制、工作模式及高级特性,帮助开发者掌握这一强大的异步通信工具。一、RabbitMQ核心概念解析1.1基本架构模型RabbitMQ
- Kafka深度解析:架构、原理与应用实践
JouJz
kafka架构linq
Kafka深度解析:架构、原理与应用实践引言在现代分布式系统架构中,消息队列作为系统解耦、异步通信的核心组件发挥着至关重要的作用。而在众多消息队列解决方案中,ApacheKafka凭借其卓越的性能、高吞吐量和可靠性,已成为企业级数据管道的首选技术。本文将深入剖析Kafka的核心架构、工作原理以及实践应用,帮助开发者全面掌握这一强大的分布式消息系统。一、Kafka概述与核心概念1.1Kafka的诞生
- 深入理解红锁
未来并未来
redis数据库缓存
在构建高并发、高可用的分布式系统时,我们常常会遇到这样一个核心挑战:如何确保多个服务实例能够安全、有序地访问共享资源,避免竞态条件(RaceCondition)和数据不一致?传统单机环境下的锁机制(如Java的synchronized或ReentrantLock)在分布式场景下显得力不从心。于是,分布式锁应运而生,而基于Redis的分布式锁因其高性能和简单性而被广泛应用。然而,单节点Redis锁在
- Redis分布式锁深度剖析:从原理到高可用实践
JouJz
redis分布式wpf
Redis分布式锁深度剖析:从原理到高可用实践引言:分布式环境下的锁之殇在分布式系统中,共享资源互斥访问是保证数据一致性的核心挑战。传统单机锁(如synchronized)在跨进程场景下完全失效,这就是分布式锁的用武之地。Redis凭借其高性能、原子操作等特性,成为实现分布式锁的主流方案。本文将深入解析Redis分布式锁的实现原理、典型问题及工业级解决方案。一、分布式锁的本质要求1.1必须满足的核
- JAVA中分布式环境中如何实现单点登录与session共享
在远方的你等我
在单服务器web应用中,登录用户信息只需存在该服务的session中,这是我们几年前最长见的办法。而在当今分布式系统的流行中,微服务已成为主流,用户登录由某一个单点服务完成并存储session后,在高并发量的请求(需要验证登录信息)到达服务端的时候通过负载均衡的方式分发到集群中的某个服务器,这样就有可能导致同一个用户的多次请求被分发到集群的不同服务器上,就会出现取不到session数据的情况,于是
- 分布式学习笔记_04_复制模型
NzuCRAS
分布式学习笔记架构后端
常见复制模型使用复制的目的在分布式系统中,数据通常需要被分布在多台机器上,主要为了达到:拓展性:数据量因读写负载巨大,一台机器无法承载,数据分散在多台机器上仍然可以有效地进行负载均衡,达到灵活的横向拓展高容错&高可用:在分布式系统中单机故障是常态,在单机故障的情况下希望整体系统仍然能够正常工作,这时候就需要数据在多台机器上做冗余,在遇到单机故障时能够让其他机器接管统一的用户体验:如果系统客户端分布
- php 高并发下日志量巨大,如何高效采集、存储、分析
贵哥的编程之路(热爱分享 为后来者)
PHP语言经典程序100题php开发语言
1.问题背景高并发系统每秒产生大量日志(如访问日志、错误日志、业务日志等)。单机写入、存储、分析能力有限,容易成为瓶颈。需要支持实时采集、分布式存储、快速检索与分析。2.主流架构方案一、分布式日志采集架构[应用服务器(PHP等)]|v[日志采集Agent(如Filebeat、Fluentd、Logstash)]|v[消息队列/缓冲(如Kafka、Redis、RabbitMQ)]|v[日志存储(如E
- 消息中间件巡检
搬砖小常
消息中间件运维笔记RocketMQkafka中间件巡检运维
除资源使用情况外,消息中间件RocketMQ、kafka还可以巡检哪些?一、RocketMQ巡检1、检查broker写入耗时是否有压力2、检查brokerbusy的数量与频率3、主题发送TPS、发送错误率巡检4、从节点消费情况检查5、集群各broker消息流转情况巡检二、Kafka巡检1、检查是否有分区发生ISR频繁扩张收缩2、检查分区leader选举值是否处于正常水平3、检查controller
- RocketMQ 之死信队列
firepation
RocketMQrocketmq
在分布式消息系统中,消息的可靠传递和处理至关重要。然而,由于各种原因(如消息处理失败、消费超时等),一些消息可能无法被正常消费。这些无法被消费的消息如果不加以处理,会影响系统的稳定性和数据一致性。为了解决这一问题,RocketMQ提供了死信队列(DeadLetterQueue,DLQ)机制。本文将深入探讨RocketMQ的死信队列,包括其实现原理、应用场景以及使用示例。什么是死信队列?死信队列是一
- AIGC工具与软件开发流程的深度集成方案
Irene-HQ
软件开发测试AIGC测试工具githubAIGC程序人生面试
一、代码开发环节集成路径环境配置标准化安装AIGC工具包并配置环境变量(如设置AIGC_TOOL_PATH),确保团队开发环境一致。在IDE插件市场安装Copilot等工具,实现编码时实时建议调用。人机协作新模式需求解析:上传PRD文档,AI自动提取业务规则生成类结构(如支付模块的PaymentService雏形)。代码补全:输入注释//JWT验证中间件,生成OAuth2.0
- ZooKeeper架构及应用场景详解
走过冬季
学习笔记zookeeper架构分布式
ZooKeeper是一个开源的分布式协调服务,由Apache软件基金会维护。它旨在为分布式应用提供高性能、高可用、强一致性的基础服务,解决分布式系统中常见的协调难题(如配置管理、命名服务、分布式锁、服务发现、领导者选举等)。核心软件架构ZooKeeper的架构设计围绕其核心目标(协调)而优化,主要包含以下关键组件:集群模式(Ensemble):ZooKeeper通常部署为集群(称为ensemble
- zookeeper etcd区别
sun007700
zookeeperetcd分布式
ZooKeeper与etcd的核心区别体现在设计理念、数据模型、一致性协议及适用场景等方面。ZooKeeper基于ZAB协议实现分布式协调,采用树形数据结构和临时节点特性,适合传统分布式系统;而etcd基于Raft协议,以高性能键值对存储为核心,专为云原生场景优化,是Kubernetes等容器编排系统的默认存储组件。12架构与设计目标差异ZooKeeper。设计定位:专注于分
- 分布式选举算法<一> Bully算法
分布式选举算法详解:Bully算法引言在分布式系统中,节点故障是不可避免的。当主节点(Leader)发生故障时,系统需要快速选举出新的主节点来保证服务的连续性。Bully算法是一种经典的分布式选举算法,以其简单高效的特点被广泛应用于各种分布式系统中。什么是Bully算法?Bully算法是一种基于优先级的分布式选举算法。每个节点都有一个唯一的ID,ID值越大的节点优先级越高。当主节点故障时,优先级最
- 全面探索Kafka:架构、应用与流处理
Kafka:企业级消息系统与流处理平台的深度解析ApacheKafka作为分布式流处理平台,广泛应用于大数据处理和实时分析领域。本文将基于其官方文档,详细探讨Kafka的核心功能、应用场景以及如何进行有效管理。背景简介Kafka作为高吞吐量的消息系统,支持企业级的发布-订阅模式。它能够处理大量实时数据,并支持高并发读写操作。本文将依据Kafka官方文档的内容,逐层深入,从入门到高级应用,帮助读者全
- Elasticsearch搜索引擎存储:从原理到实践的全景解析
Python×CATIA工业智造
搜索引擎elasticsearch大数据
引言在大数据时代,数据规模呈指数级增长,传统数据库的模糊查询、实时分析能力逐渐成为瓶颈。Elasticsearch(简称ES)凭借其分布式架构、实时搜索和灵活的数据分析能力,成为企业级搜索与存储的核心引擎。截至2025年,ES在全球日志分析、电商搜索、实时监控等场景的市场占有率超过60%。本文将从存储架构、核心技术、应用场景及优化策略四个维度,深入解析Elasticsearch的设计哲学与实践价值
- Python爬虫实战:基于最新技术的定时签到系统开发全解析
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言人工智能自动化知识图谱
摘要本文详细介绍了如何使用Python开发一个功能完善的定时签到爬虫系统。文章从爬虫基础知识讲起,逐步深入到高级技巧,包括异步请求处理、浏览器自动化、验证码破解、分布式架构等最新技术。我们将通过一个完整的定时签到项目案例,展示如何构建一个稳定、高效且具有良好扩展性的爬虫系统。文中提供了大量可运行的代码示例,涵盖requests、aiohttp、selenium、playwright等多种技术方案,
- 【Kafka专栏 13】Kafka的消息确认机制:不是所有的“收到”都叫“确认”!
作者名称:夏之以寒作者简介:专注于Java和大数据领域,致力于探索技术的边界,分享前沿的实践和洞见文章专栏:夏之以寒-kafka专栏专栏介绍:本专栏旨在以浅显易懂的方式介绍Kafka的基本概念、核心组件和使用场景,一步步构建起消息队列和流处理的知识体系,无论是对分布式系统感兴趣,还是准备在大数据领域迈出第一步,本专栏都提供所需的一切资源、指导,以及相关面试题,立刻免费订阅,开启Kafka学习之旅!
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那