图数据库源起欧拉和图理论,也可称为面向/基于图的数据库,对应的英文是Graph Database。
图数据库的基本含义是以“图”这种数据结构存储和查询数据,而不是存储图片的数据库。它的数据模型主要是以节点和关系(边)来体现,也可处理键值对。它的优点是快速解决复杂的关系问题。
图将实体表现为节点,实体与其他实体连接的方式表现为联系。我们可以用这个通用的、富有表现力的结构来建模各种场景,从宇宙火箭的建造到道路系统,从食物的供应链及原产地追踪到人们的病历,甚至更多其他的场景。
图形数据库是NoSQL数据库的一种类型,它应用图形理论存储实体之间的关系信息。最常见的例子,就是社会网络中人与人之间的关系。关系型数据库用于存储关系型数据的效果并不好,其查询复杂、缓慢、超出预期,而图形数据库的独特设计恰恰弥补了这个缺陷。
目前主流的图数据库有:Neo4j,FlockDB,GraphDB,InfiniteGraph,Titan,JanusGraph,Pregel等。下面说一下JanusGraph
官网上:
JanusGraph is a scalable graph database optimized for storing and querying graphs containing hundreds of billions of vertices and edges distributed across a multi-machine cluster. JanusGraph is a transactional database that can support thousands of concurrent users executing complex graph traversals in real time.
JanusGraph是一个可扩展的图形数据库,专门用于存储和查询分析分布在多机集群中的数千亿个顶点和关系边的图形。
JanusGraph是一个事务数据库,可以支持数千个并发用户实时执行复杂的图遍历。
JanusGraph项目启动的初衷是“通过为其增加新功能、改善性能和扩展性、增加后端存储系统来增强分布式图系统的功能,从而振兴分布式图系统的开发”,JanusGraph从Apahce TinkerPop中吸收了对属性图模型(Property Graph Model)的支持和对属性图模型进行遍历的Gremlin遍历语言。
同大多数图数据库一样,JanusGraph采用 属性图 进行建模。基于属性图的模型,JanusGraph有如下基本概念:
JanusGraph是一个图形数据库引擎。JanusGraph本身专注于紧凑图形序列化,丰富的图形数据建模和高效的查询。
JanusGraph利用Hadoop进行图形分析和批处理图处理。
JanusGraph为数据持久性、数据索引和客户端访问实现了强大的模块化接口。JanusGraph的模块化架构使其能够与各种存储、索引和客户端技术进行互操作; 模块化架构还简化了JanusGraph简化了支持新的一个 模块的流程。
作为一个数据库系统,它是要用来为应用程序存储数据用的,那么应用程序应该如何使用JanusGraph来为自己存储数据呢?
一般来说,应用程序可以通过两种不同的方式来使用JanusGraph:
Gremlin Server是Apache Tinkerpop中的一个组件
JanusGraph集群包含一个、或者多个JanusGraph实例。每次启动一个JanusGraph实例的时候,都必须指定JanusGraph的配置。在配置中,可以指定JanusGraph要用的组件,可以控制JanusGraph运行的各个方面,还可以指定一些JanusGraph集群的调优选项。
以上提到的后端存储系统、索引后端、缓存、调优选项等都可以在JanusGraph的配置文件中进行指定。默认情况下它的配置文件存放在JanusGraph_home/conf目录下。
storage.backend=cassandra
storage.hostname=localhost
index.search.backend=elasticsearch
index.search.hostname=
index.search.elasticsearch.client-only=true
也可以在写测试用例时代码控制:
/**
* 创建一个JanusGraph实例
* @return JanusGraph的一个实例
*/
private static JanusGraph create() {
try {
return JanusGraphFactory.build()
.set("storage.backend", "hbase")
.set("storage.hostname", "")
.set("storage.port", "")
.set("storage.hbase.table", "")
.set("cache.db-cache", "true")
.set("cache.db-cache-clean-wait", "20")
.set("cache.db-cache-time", "180000")
.set("cache.db-cache-size", "0.5")
.set("index.relationalNetwork.backend", "elasticsearch")
.set("index.relationalNetwork.hostname", "")
.set("index.relationalNetwork.port", 9000)
.open();
} catch (Exception e) {
e.printStackTrace();
return null;
}
}
ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、交互转换(transform)、加载(load)至目的端的过程。
目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。
ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehousing,数据仓库)中去.
详情:https://www.cnblogs.com/yjd_hycf_space/p/7772722.html
refer:
http://www.cnblogs.com/zhangzl419/p/9100498.html
http://www.itboth.com/d/NBVZjy/hbase