face_recognition之调用摄像头

原文链接:https://kissmett.iteye.com/blog/2409859

本face_recognition实现功能是调用摄像头与images文件夹下的图片对比,若对比成功,则打印图片的命名,否则打印”未知人员“。

注意事项:

1、放图片的images文件夹与代码同级

2、将msyh.ttf字体放到项目中

facerecognition.py
# -*- coding: UTF-8 -*-
import face_recognition
import cv2
import os
import ft2
#中文支持,加载微软雅黑字体
ft = ft2.put_chinese_text('msyh.ttf')
# 获取摄像头# 0(默认)
video_capture = cv2.VideoCapture(0)
# 加载待识别人脸图像并识别。
basefacefilespath ="images"#faces文件夹中放待识别任务正面图,文件名为人名,将显示于结果中
baseface_titles=[] #图片名字列表
baseface_face_encodings=[] #识别所需人脸编码结构集
#读取人脸资源
for fn in os.listdir(basefacefilespath): #fn 人脸文件名
    baseface_face_encodings.append(face_recognition.face_encodings(face_recognition.load_image_file(basefacefilespath+"/"+fn))[0])
    fn=fn[:(len(fn)-4)]
    baseface_titles.append(fn)
while True:
    # 获取一帧视频
    ret, frame = video_capture.read()
    # 人脸检测,并获取帧中所有人脸编码
    face_locations = face_recognition.face_locations(frame)
    face_encodings = face_recognition.face_encodings(frame, face_locations)
    # 遍历帧中所有人脸编码
    for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
        # 与baseface_face_encodings匹配否?
        for i,v in enumerate(baseface_face_encodings):
            match = face_recognition.compare_faces([v], face_encoding,tolerance=0.5)
            name = "未知人员"
            if match[0]:
                name = baseface_titles[i]
                break
        #name=str(name,'gbk')#gbk is also ok.
        print(name)
        # 围绕脸的框
        cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
        # 框下的名字(即,匹配的图片文件名)
        cv2.rectangle(frame, (left, bottom), (right, bottom+2), (0, 0, 255), cv2.FILLED)
        frame = ft.draw_text(frame, (left + 1, bottom + 12), name, 20,  (255, 255, 255))
        # show结果图像
        cv2.imshow('Video', frame)
    # 按q退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break
# 释放摄像头中的流
video_capture.release()
cv2.destroyAllWindows()

ft2.py

# -*- coding: utf-8 -*-

import numpy as np
import freetype
import copy
import pdb


class put_chinese_text(object):
    def __init__(self, ttf):
        self._face = freetype.Face(ttf)

    def draw_text(self, image, pos, text, text_size, text_color):
        '''
        draw chinese(or not) text with ttf
        :param image:     image(numpy.ndarray) to draw text
        :param pos:       where to draw text
        :param text:      the context, for chinese should be unicode type
        :param text_size: text size
        :param text_color:text color
        :return:          image
        '''
        self._face.set_char_size(text_size * 64)
        metrics = self._face.size
        ascender = metrics.ascender / 64.0

        # descender = metrics.descender/64.0
        # height = metrics.height/64.0
        # linegap = height - ascender + descender
        ypos = int(ascender)

        if not isinstance(text, str):
            text = text.decode('utf-8')
        img = self.draw_string(image, pos[0], pos[1] + ypos, text, text_color)
        return img

    def draw_string(self, img, x_pos, y_pos, text, color):
        '''
        draw string
        :param x_pos: text x-postion on img
        :param y_pos: text y-postion on img
        :param text:  text (unicode)
        :param color: text color
        :return:      image
        '''
        prev_char = 0
        pen = freetype.Vector()
        pen.x = x_pos << 6  # div 64
        pen.y = y_pos << 6

        hscale = 1.0
        matrix = freetype.Matrix(int(hscale) * 0x10000, int(0.2 * 0x10000),int(0.0 * 0x10000), int(1.1 * 0x10000))
        cur_pen = freetype.Vector()
        pen_translate = freetype.Vector()

        image = copy.deepcopy(img)
        for cur_char in text:
            self._face.set_transform(matrix, pen_translate)

            self._face.load_char(cur_char)
            kerning = self._face.get_kerning(prev_char, cur_char)
            pen.x += kerning.x
            slot = self._face.glyph
            bitmap = slot.bitmap

            cur_pen.x = pen.x
            cur_pen.y = pen.y - slot.bitmap_top * 64
            self.draw_ft_bitmap(image, bitmap, cur_pen, color)

            pen.x += slot.advance.x
            prev_char = cur_char

        return image

    def draw_ft_bitmap(self, img, bitmap, pen, color):
        '''
        draw each char
        :param bitmap: bitmap
        :param pen:    pen
        :param color:  pen color e.g.(0,0,255) - red
        :return:       image
        '''
        x_pos = pen.x >> 6
        y_pos = pen.y >> 6
        cols = bitmap.width
        rows = bitmap.rows

        glyph_pixels = bitmap.buffer

        for row in range(rows):
            for col in range(cols):
                if glyph_pixels[row * cols + col] != 0:
                    img[y_pos + row][x_pos + col][0] = color[0]
                    img[y_pos + row][x_pos + col][1] = color[1]
                    img[y_pos + row][x_pos + col][2] = color[2]

if __name__ == '__main__':
    # just for test
    import cv2

    line = '人脸识别'
    img = np.zeros([300, 300, 3])

    color_ = (204, 255, 255)  # Green
    pos = (3, 3)
    text_size = 24

    # ft = put_chinese_text('wqy-zenhei.ttc')
    ft = put_chinese_text('msyh.ttf')
    image = ft.draw_text(img, pos, line, text_size, color_)

    cv2.imshow('窗体', image)
    cv2.waitKey(0)

若freetype包出错

在pycharm终端输入:pip install freetype-py安装即可!

 

 

 

 

你可能感兴趣的:(人脸识别)