Object提供了三个方法wait(), notify(), notifyAll()在线程之间进行通信,以此来解决线程间执行顺序等问题。
值得注意的是这三个方法是属于Object而不是属于Thread的,但是调用的时候必须用同步监视器来调用,
在经典的生产者-消费者问题中,需要使用线程通信来解决。
假设有这么一个场景,有一个线程需要存钱进一个账户,有多个线程需要从这个账户取钱,要求是每次必须先存钱之后才能取钱,而且取钱之后必须存钱,
存钱和取钱不能同时发生两次,而是要保持顺序不变,如何实现这个需求呢。
下面是用同步方法结合线程通信的方式来实现的思路,
下面给出实现代码
在Account类中定义两个同步方法,draw和deposit
package threads.sync;
public class Account {
private String accountNo;
private double balance;
private boolean flag = false;
public Account() {}
public Account(String accountNo, double balance) {
this.accountNo = accountNo;
this.balance = balance;
}
public String getAccountNo() {
return accountNo;
}
public void setAccountNo(String accountNo) {
this.accountNo = accountNo;
}
public double getBalance() {
return balance;
}
public void setBalance(double balance) {
this.balance = balance;
}
public int hashCode() {
return accountNo.hashCode();
}
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj != null && obj.getClass() == Account.class) {
Account target = (Account)obj;
return target.getAccountNo().equals(accountNo);
}
return false;
}
public synchronized void draw(double drawAmount) {
try {
if (!flag) {
wait();
} else {
System.out.println(Thread.currentThread().getName()
+ " draw money: " + drawAmount);
balance -= drawAmount;
System.out.println(" "
+ " balance : " + balance);
flag = false;
notifyAll();
}
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
public synchronized void deposit(double depositAmount) {
try {
if (flag) {
wait();
} else {
System.out.println(Thread.currentThread().getName()
+ " deposit money: " + depositAmount);
balance += depositAmount;
System.out.println(" "
+ " balance : " + balance);
flag = true;
notifyAll();
}
} catch (InterruptedException ex) {
ex.printStackTrace();
}
}
}
定义一个存款线程类depositThread
package threads.sync;
public class DepositThread extends Thread {
private Account account;
private double depositAmount;
public DepositThread(String name, Account account, double depositAmount) {
super(name);
this.setAccount(account);
this.setDepositAmount(depositAmount);
}
public Account getAccount() {
return account;
}
public void setAccount(Account account) {
this.account = account;
}
public double getDepositAmount() {
return depositAmount;
}
public void setDepositAmount(double depositAmount) {
this.depositAmount = depositAmount;
}
public void run() {
for(int i=0 ; i<10; i++) {
account.deposit(depositAmount);
}
}
}
定义一个取款线程类depositThread
package threads.sync;
public class DrawThread extends Thread {
private Account account;
private double drawAmount;
public DrawThread(String name, Account account, double drawAmount) {
super(name);
this.setAccount(account);
this.setDrawAmount(drawAmount);
}
public Account getAccount() {
return account;
}
public void setAccount(Account account) {
this.account = account;
}
public double getDrawAmount() {
return drawAmount;
}
public void setDrawAmount(double drawAmount) {
this.drawAmount = drawAmount;
}
public void run() {
for(int i=0 ; i<10; i++) {
account.draw(drawAmount);
}
}
}
下面是测试类,存款线程中会有10次存款,三个取款线程中总共会有30次取款,
package threads.sync;
public class DrawTest {
public static void main(String[] args) {
Account acc = new Account("123456",1000);
new DrawThread("DrawThread", acc, 800).start();
new DepositThread("DepositThread-A",acc,800).start();
new DepositThread("DepositThread-B",acc,800).start();
new DepositThread("DepositThread-C",acc,800).start();
}
}
执行结果,
DepositThread-A deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-B deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-C deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-C deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-C deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-C deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-C deposit money: 800.0
balance : 1800.0
DrawThread draw money: 800.0
balance : 1000.0
DepositThread-A deposit money: 800.0
balance : 1800.0
从执行结果中可以看到,三个取款线程ABC执行顺序随机,但是总是在存款完成后,才会进行取款操作,而且无论存款还是取款,都不会同时进行两次。
如果程序使用lock来同步线程的话,就要使用condition来进行线程通信。
在lock同步线程中,lock 对象就是一个显示的同步监视器,但是这个显示的同步监视器不直接阻塞或者通知线程,而是通过condition——lock对象通过调用newCondition方法返回一个与lock关联的condition对象,由condition对象来控制线程阻塞(await)和发出信号(single)唤醒其他线程。
与synchronized同步线程方式对应的是,conditions方式也提供了三个方法,
await:类似于synchronized隐式同步控制器对象调用的wait方法,可以阻塞当前线程,直到在别的线程中调用了condition的singal方法唤醒该线程。
signal:随机唤醒一个被await阻塞的线程。注意只有在当前线程已经释放lock同步监视器之后,被唤醒的其他线程才有机会执行。
signalAll:与上面类似,但是是唤醒所有线程。
下面用condition的方式来实现前面的银行取钱的例子,只需要修改Account类,改用lock同步线程,condition线程通信,
package threads.sync;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class Account {
private String accountNo;
private double balance;
private boolean flag = false;
//显示定义lock对象
private final Lock lock = new ReentrantLock();
//获取lock对象对应的condition
private final Condition cond = lock.newCondition();
public Account() {}
public Account(String accountNo, double balance) {
this.accountNo = accountNo;
this.balance = balance;
}
public String getAccountNo() {
return accountNo;
}
public void setAccountNo(String accountNo) {
this.accountNo = accountNo;
}
public double getBalance() {
return balance;
}
public void setBalance(double balance) {
this.balance = balance;
}
public int hashCode() {
return accountNo.hashCode();
}
public boolean equals(Object obj) {
if (this == obj) return true;
if (obj != null && obj.getClass() == Account.class) {
Account target = (Account)obj;
return target.getAccountNo().equals(accountNo);
}
return false;
}
public void draw(double drawAmount) {
lock.lock();
try {
//if flag = false, means only deposit can be done, draw method will be blocked
if (!flag) {
//this.wait();
cond.await();
} else {
System.out.println(Thread.currentThread().getName()
+ " draw money: " + drawAmount);
balance -= drawAmount;
System.out.println(" "
+ " balance : " + balance);
flag = false;
//this.notifyAll();
cond.signalAll();
}
} catch (InterruptedException ex) {
ex.printStackTrace();
} finally {
lock.unlock();
}
}
public void deposit(double depositAmount) {
lock.lock();
try {
//if flag = false, means only draw can be done, deposit method will be blocked
if (flag) {
//this.wait();
cond.await();
} else {
System.out.println(Thread.currentThread().getName()
+ " deposit money: " + depositAmount);
balance += depositAmount;
System.out.println(" "
+ " balance : " + balance);
flag = true;
//this.notifyAll();
cond.signalAll();
}
} catch (InterruptedException ex) {
ex.printStackTrace();
} finally {
lock.unlock();
}
}
}
对比用synchronized方式同步线程的例子,前面例子中是隐式的同步监视器(this)调用wait和notify来通信,
而本例是显示同步监视器(lock)的关联对象(condition)调用await和signal来通信,执行结果与前面一样不再给出。
BlockingQueue是JAVA5提供的一个队列接口,但这个队列并不是用作一个容器,而是作为线程的同步工具。
它可以很好地解决生产者消费者问题,而且比前面提到的两种方式更为灵活,
BlockingQueue的特征是,
当生产者线程试图向BlockingQueue存入元素时,如果队列已满,生产者线程将会阻塞,
当消费者线程试图从BlockingQueue取出元素时,如果队列为空,消费者线程将会阻塞
对比前面线程通信的例子,synchronized同步方法/代码块和lock+condition方式中,都只能控制生产者和消费者按固定顺序执行,
但BlockingQueue则是可以通过集合中的元素个数(商品数量)来控制线程执行顺序,通过调整集合容量可以控制线程切换的条件。
集合(商品)为空时,消费者阻塞,只能执行生产者线程;集合(商品)已满时,生产者阻塞,只能执行消费者线程。
BlockingQueue接口有很多实现类,下面演示最常用的实现类ArrayBlockQueue控制线程通信,
定义一个生产者线程类Producter
package threads.sync;
import java.util.concurrent.BlockingQueue;
public class Producter extends Thread {
private BlockingQueue bq;
public Producter(BlockingQueue bq) {
this.bq = bq;
}
public void run() {
String[] strArr = new String[] {
"Java",
"Struts",
"Spring"
};
for(int i = 0; i<999999; i++) {
System.out.println(getName()+" 生产者准备生产集合元素");
try {
Thread.sleep(200);
//如果队列已满,线程将阻塞
bq.put(strArr[i % 3]);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(getName()+" 生产完成: " + bq);
}
}
}
定义一个消费者类Consumer
package threads.sync;
import java.util.concurrent.BlockingQueue;
public class Consumer extends Thread {
private BlockingQueue bq;
public Consumer(BlockingQueue bq) {
this.bq = bq;
}
public void run() {
while (true) {
System.out.println(getName()+" 消费者准备消费集合元素");
try {
Thread.sleep(200);
//如果队列已空,线程将阻塞
bq.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(getName()+" 消费完成: " + bq);
}
}
}
在测试类中,定义一个容量为2的阻塞集合,
启动三个生产者线程, 每个线程都在不停生产商品,存入阻塞队列中,
启动一个消费者线程,每个线程也在不停从阻塞队列中取出商品,
package threads.sync;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
public class BlockingQueueTest {
public static void main(String[] args) {
BlockingQueue bq = new ArrayBlockingQueue(2);
new Producter(bq).start();
new Producter(bq).start();
new Producter(bq).start();
new Consumer(bq).start();
}
}
执行结果,从执行结果中可以看到,只要集合中有元素且集合没有满,那么生产者和消费者线程都有机会得到执行,具体谁有机会要看谁抢到CPU执行片,
但是当集合空了的时候,例如第7行(Thread-8 消费完成: []),接着又有一个消费者线程执行,但是因此集合为空而阻塞了,此时只有生产者线程能执行,
当集合满了的时候,例如第11行(Thread-7 生产完成: [Java, Java]),接着又有一个生产者线程执行,但是因为集合已满而阻塞了,此时只有消费者线程能执行。
Thread-5 生产者准备生产集合元素
Thread-6 生产者准备生产集合元素
Thread-7 生产者准备生产集合元素
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Java]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: []
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Java]
Thread-6 生产者准备生产集合元素
Thread-7 生产完成: [Java, Java]
Thread-7 生产者准备生产集合元素
Thread-8 消费完成: [Java]
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Java, Struts]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Struts, Struts]
Thread-6 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-7 生产完成: [Struts, Struts]
Thread-7 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Struts, Spring]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: [Spring]
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Spring, Spring]
Thread-6 生产者准备生产集合元素
Thread-8 消费完成: [Spring]
Thread-8 消费者准备消费集合元素
上面的例子来自李刚的疯狂JAVA, 但个人认为并不是太好,因为无论在生产者还是消费者线程中,打印bq操作前后的两段日志并不是原子操作,这会导致打印的日志不准确,
例如下面的运行结果,从第5行看到(Thread-6 生产完成: []),刚刚执行完一个生产者线程中的入队操作,但是打印队列却是空的,原因就在于在打印两行日志期间,消费者线做了取元素的操作。
Thread-5 生产者准备生产集合元素
Thread-6 生产者准备生产集合元素
Thread-7 生产者准备生产集合元素
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Java]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: []
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Java]
Thread-6 生产者准备生产集合元素
Thread-7 生产完成: [Java, Java]
Thread-7 生产者准备生产集合元素
Thread-8 消费完成: [Java]
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Java, Struts]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Struts, Struts]
Thread-6 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-7 生产完成: [Struts, Struts]
Thread-7 生产者准备生产集合元素
Thread-8 消费完成: [Struts]
Thread-8 消费者准备消费集合元素
Thread-5 生产完成: [Struts, Spring]
Thread-5 生产者准备生产集合元素
Thread-8 消费完成: [Spring]
Thread-8 消费者准备消费集合元素
Thread-6 生产完成: [Spring, Spring]
Thread-6 生产者准备生产集合元素
Thread-8 消费完成: [Spring]
Thread-8 消费者准备消费集合元素