对于一棵n个结点的无根树,找到一个点,使得把树变成以该点为根的有根树时,最大子树的结点数最小,该点即为重心。换句话说,删除这个点后最大连通块(一定是树)的结点数最小。
一道典型的求树的重心的题目,用dfs实现
用数组dp[i]记录i的最大子树的大小,son[i]记录儿子的个数
树的重心即为所有节点中最大子树大小最小的节点
#include
#include
#include
#include
#define L 20010
using namespace std;
struct node{
int nxt, to;
} a[L << 1];
int n, T, u, v, head[L], cnt, son[L], siz, ans, dp[L];
inline void add(int x, int y) {
a[++cnt].nxt = head[x];
a[cnt].to = y;
head[x] = cnt;
}
inline void dfs(int s, int fa) {
dp[s] = 0, son[s] = 1;
for (int i = head[s]; i; i = a[i].nxt) {
int u = a[i].to;
if (u == fa) continue;
dfs(u, s);
dp[s] = max(dp[s], son[u]);
son[s] += son[u];
}
dp[s] = max(dp[s], n - son[s]);
}
int main() {
scanf("%d", &T);
while (T--) {
memset(a, 0, sizeof(a));
memset(head, 0, sizeof(head));
memset(dp, 0, sizeof(dp));
memset(son, 0, sizeof(son));
cnt = 0;
scanf("%d", &n);
for (int i = 1; i < n; ++i) {
scanf("%d %d", &u, &v);
add(u, v), add(v, u);
}
dfs(1, 0);
ans = 1, siz = dp[1];
for (int i = 2; i <= n; ++i)
if (dp[i] < siz)
ans = i, siz = dp[i];
printf("%d %d\n", ans, siz);
}
return 0;
}
树形DP的板子题
不断dfs更新出以每个点为根节点最远及次远的长度,输出长度和的最大值即可
#include
#include
#include
#include
#define L 1000010
using namespace std;
struct node{
int nxt, to;
long long l;
} e[L];
int n, m, a, b, head[L], cnt;
long long c, dp1[L], dp2[L], ans;
char pd[3];
inline void add(int a, int b, long long d) {
e[++cnt].nxt = head[a];
e[cnt].to = b;
e[cnt].l = d;
head[a] = cnt;
}
inline void dfs(int x, int fa) {
for (int i = head[x]; i; i = e[i].nxt) {
int u = e[i].to;
if (u == fa) continue;
dfs(u, x);
if (dp1[x] < dp1[u] + e[i].l) dp2[x] = dp1[x], dp1[x] = dp1[u] + e[i].l;
else dp2[x] = max(dp2[x], dp1[u] + e[i].l);
}
ans = max(ans, dp1[x] + dp2[x]);
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; ++i) {
scanf("%d %d %lld %s", &a, &b, &c, pd);
add(a, b, c), add(b, a, c);
}
dfs(1, 0);
printf("%lld\n", ans);
return 0;
}
对于每一个节点有两种情况,去或者不去,可用二维状态表示
若i去了,则i的儿子不能去,dfs更新值即可
#include
#include
#include
#include
#define L 6000 + 10
using namespace std;
int n, a, b, root, fa[L], vis[L], dp[L][2];
inline void dfs(int x) {
vis[x] = 1;
for (int i = 1; i <= n; ++i)
if (fa[i] == x && !vis[i]) {
dfs(i);
dp[x][1] += dp[i][0];
dp[x][0] += max(dp[i][1], dp[i][0]);
}
}
int main() {
while (scanf("%d", &n) == 1){
for (int i = 1; i <= n; ++i) scanf("%d", &dp[i][1]);
root = 0;
while(scanf("%d %d", &a, &b) && a && b) fa[a] = b, root = b;
memset(vis, 0, sizeof(vis));
dfs(root);
printf("%d\n", max(dp[root][1], dp[root][0]));
}
return 0;
}