- 【推荐算法课程二】推荐算法介绍-深度学习算法
盒子6910
运维视角下的广告业务算法推荐算法深度学习运维开发运维人工智能
三、深度学习在推荐系统中的应用3.1深度学习推荐模型的演化关系图3.2AutoRec——单隐层神经网络推荐模型3.2.1AutoRec模型的基本原理AutoRec模型是一个标准的自编码器,它的基本原理是利用协同过滤中的共现矩阵,完成物品向量或者用户向量的自编码。再利用自编码的结果得到用户对物品的预估评分,进而进行推荐排序。什么是自编码器?自编码器是指能够完成数据“自编码”的模型。无论是图像、音频,
- DeepFM算法原理及应用场景
DeepFM(DeepFactorizationMachine)是一种结合了因子分解机(FactorizationMachines,FM)和深度神经网络(DNN)的混合模型,主要用于处理高维稀疏数据(如推荐系统中的点击率预测)。其核心思想是同时捕捉低阶(线性)和高阶(非线性)特征交互。1.算法原理模型结构如下:FM部分:负责捕捉低阶特征交互(如一阶和二阶特征组合)。一阶项:线性特征权重。二阶项:通
- 【AI智能推荐系统】第二篇:深度学习在推荐系统中的架构设计与优化实践
DeepFaye
人工智能深度学习
第二篇:深度学习在推荐系统中的架构设计与优化实践提示语:“从Wide&Deep到Transformer,深度推荐模型如何突破性能瓶颈?本文将揭秘Netflix、淘宝都在用的深度学习推荐架构,手把手教你设计高精度推荐系统!”目录深度学习推荐系统的核心优势主流深度学习推荐架构解析2.1Wide&Deep模型2.2DeepFM与xDeepFM2.3神经协同过滤(NCF)2.4基于Transformer的
- 基于Elasticsearch的短视频平台个性化推荐系统设计与实现
亲爱的非洲野猪
elasticsearch音视频推荐算法
在当今内容爆炸的时代,个性化推荐系统已成为短视频平台的核心竞争力之一。本文将详细介绍如何利用Elasticsearch(ES)构建一个高效、可扩展的短视频个性化推荐系统。一、系统架构概述我们的推荐系统将采用混合推荐策略,结合协同过滤、内容相似度和热度推荐等多种方法。Elasticsearch作为核心搜索引擎和数据存储,将承担以下职责:用户画像存储与查询视频内容索引与检索实时行为日志分析推荐结果计算
- 协同过滤算法:挖掘用户偏好,精准推荐商品
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍协同过滤(CollaborativeFiltering,CF)作为推荐系统中的重要技术,其核心思想是利用用户和物品间的行为数据,挖掘用户隐性偏好,从而实现精准推荐。自20世纪90年代提出以来,协同过滤算法已经在电子商务、社交媒体、音乐视频等多个领域中广泛应用,取得了显著的推荐效果。协同过滤算法主要分为基于用户的协同过滤和基于物品的协同过滤两种。基于用户的协同过滤通过比较用户间的相似性,
- 协同过滤推荐算法
禺垣
机器学习笔记算法机器学习推荐算法算法机器学习
协同过滤(CollaborativeFiltering)是推荐系统中最经典的算法之一,其核心思想是“物以类聚,人以群分”,即通过分析用户的历史行为数据,找到与目标用户相似的用户群体或相似的物品,从而为目标用户推荐他们可能感兴趣的物品。一、基于用户的协同过滤(User-BasedCF)核心思想:找到与目标用户兴趣相似的其他用户(“邻居”),将这些邻居喜欢的物品推荐给目标用户。步骤:s1.计算用户
- 深度探索 Py2neo:用 Python 玩转图数据库 Neo4j
萧鼎
python基础到进阶教程python数据库neo4j
随着社交网络、推荐系统、知识图谱等应用的普及,图数据库越来越成为解决关系复杂数据问题的重要武器。作为图数据库中的佼佼者,Neo4j凭借其强大的性能和灵活的数据模型,被广泛应用于各种关联密集型场景。而在Python生态中,py2neo是使用最广泛的Neo4j客户端库之一,它简洁直观,封装度高,能够让你在Python中像操作对象一样操作图数据。本文将全面介绍py2neo的使用方法与设计理念,帮助你快速
- Vue2 视频推荐页面:完整布局与动态数据实现 用 Vue2 开发视频推荐页面:简洁优雅的实现方式 Vue2 项目实战:多分类动态内容展示的实现 用 Vue2 打造视频推荐系统:从零开始完整教程 Vu
南北极之间
web前端特效源码cssjavascript网页设计html前端网站首页视频网站
效果图【定制化开发服务,让您的项目领先一步】如有需求,直接私信留下您的联系方式。谢谢。我的邮箱:
[email protected]完整代码以下包括导航栏、分类切换、推荐内容展示等。使用虚拟假数据模拟真实场景,图片用占位符代替。代码实现<html
- ElasticCTR:一键部署的分布式CTR预估解决方案
萧桔格Wilbur
ElasticCTR:一键部署的分布式CTR预估解决方案ElasticCTRElasticCTR,即飞桨弹性计算推荐系统,是基于Kubernetes的企业级推荐系统开源解决方案。该方案融合了百度业务场景下持续打磨的高精度CTR模型、飞桨开源框架的大规模分布式训练能力、工业级稀疏参数弹性调度服务,帮助用户在Kubernetes环境中一键完成推荐系统部署,具备高性能、工业级部署、端到端体验的特点,并且
- 圈子系统公众号app小程序系统源码公众号+圈子小程序:如何用“内容+社交”打造用户闭环生态?
前端
圈子系统:构建"交流→共鸣→成长"的进阶生态一、系统设计理念演进1.0基础交流层话题发布/回复功能基础点赞评论互动简单分类标签系统2.0情感共鸣层情绪标签识别(AI分析内容情感倾向)共鸣指数算法(根据互动深度计算)志同道合推荐系统3.0成长体系层多维能力评估模型个性化成长路径成就勋章系统二、核心技术实现方案1.共鸣引擎#共鸣度计算算法示例defcalculate_resonance(topic):
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- 产品背景知识——在线推理和离线推理
爱吃芝麻汤圆
#产品背景知识推理
产品背景知识——在线推理和离线推理一、核心区别:从4个维度对比1.数据处理方式与时效性在线推理(实时推理)数据特点:处理实时流入的单条或小批量数据(如用户点击、交易请求)。时效性要求:需在毫秒级到秒级内返回结果,延迟直接影响用户体验或业务决策。典型场景:电商推荐系统(用户浏览商品时实时推荐)、金融风控(交易时实时欺诈检测)。离线推理(批量推理)数据特点:处理历史累积的大规模数据集(如TB级日志、数
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 小红书笔记详情API接口概述及JSON数据返回参考
Json_18179014480
APIjson大数据数据库大数据json
前言一、接口概述小红书笔记详情API接口是小红书开放平台提供的一项服务,允许开发者通过编程方式获取小红书上特定笔记的详细信息。该接口的核心功能包括:获取笔记内容:标题、正文、图片、视频等多媒体信息。用户互动数据:点赞数、评论数、收藏数、分享数等。作者信息:作者昵称、头像、粉丝数等。发布信息:发布时间、标签列表等。通过该接口,开发者可以构建内容分析工具、笔记推荐系统、数据爬虫等应用,帮助企业或个人进
- 从0到1构建智能招聘数据引擎:基于 Python 的 BOSS直聘信息采集实战与反爬破解指南
程序员威哥
python开发语言
前言在大数据浪潮席卷的时代,招聘平台蕴藏着海量的岗位信息,揭示着行业走向、人才趋势、薪资结构等核心价值。BOSS直聘作为国内极具代表性的直招平台,其数据对职业分析、市场监测甚至智能推荐系统的构建都有着重要意义。本文将手把手带你打造一个高质量、抗封锁的Python爬虫系统,精准采集BOSS直聘网的岗位数据,并全面解析其中涉及的反爬机制识别、加密参数处理、数据提取与存储等高级技巧,助你在Web数据采集
- 推荐系统的视频特征-视频关键帧特征提取与向量生成
总体流程概览视频文件(.mp4)↓关键帧抽取(FFmpeg/SceneDetect)↓帧图像(.jpg)↓图像模型提取特征(CLIP/CNN/ViT)↓多帧聚合成视频向量(均值池化等)↓向量库/推荐系统模型特征提取推荐:使用OpenAI的CLIP模型CLIP(ContrastiveLanguage-ImagePretraining)适合推荐系统做跨模态建模,对视频封面帧或场景帧提取效果非常好。✅1
- Neo4j 图数据库安装教程(2024最新版)—— Windows / Linux / macOS 全平台指南
2501_91537435
图数据库neo4j数据库windows
Neo4j图数据库安装教程(2024最新版)——Windows/Linux/macOS全平台指南Neo4j是目前最流行的图数据库(GraphDatabase),广泛应用于社交网络、推荐系统、知识图谱等领域。本文将详细介绍Windows、Linux和macOS三大平台的Neo4j安装方法,并包含配置优化、基础使用示例和常见问题解决。一、Neo4j简介1.什么是Neo4j?Neo4j是一个高性能的No
- Python隐式反馈数据集库之implicit使用详解
Rocky006
python开发语言
概要Implicit是一个专注于隐式反馈数据集的协同过滤推荐系统Python库,由BenFrederickson开发。与显式反馈(如用户明确给予的评分)不同,隐式反馈是指用户通过行为间接表达偏好的数据,如点击次数、浏览时长或购买历史。这类数据在实际应用中更为普遍,但也更难以处理。传统推荐系统如Surprise或LightFM虽然功能全面,但在处理大规模稀疏矩阵时性能不佳。Implicit库通过优化
- 【有源码】基于爬虫+python的美食数据分析与可视化flask热门美食推荐系统的设计与实现
Q2643365023
Python大数据python爬虫计算机毕设选题毕业设计源码计算机毕设项目数据分析美食推荐系统
注意:该项目只展示部分功能,如需了解,文末咨询即可。本文目录1.开发环境2系统设计2.1设计背景2.2设计内容3系统展示3.1功能展示视频3.2系统页面4更多推荐5部分功能代码1.开发环境开发语言:Python采用技术:flask、爬虫数据库:MySQL开发环境:PyCharm2系统设计2.1设计背景在现代社会中,人们对美食的兴趣和需求日益增长。互联网和社交媒体的普及使得各种美食信息、评论和推荐变
- Java AI 新纪元:Spring AI 与 Spring AI Alibaba 的崛起
小沛9
SpringAIAlibabaSpringAIjava人工智能springspringaiSAA
此章节没什么营养,只是一个描述,同时也能看到AI的能力(文章基本都是AI进行生成的),小沛觉得开始不写点引言好像差了点什么东西,好像鱼离开了自行车。引言:AI时代对Java开发者的机遇与挑战,Java在AI领域的现状在当今技术飞速发展的时代,人工智能(AI)已不再是遥不可及的未来概念,而是深刻地融入到我们生活的方方面面,从智能推荐系统到自动驾驶,从自然语言处理到计算机视觉,AI正以前所未有的速度改
- 基于Python的京东商品信息采集实战:用Playwright+Pandas打造高效数据抓取工具
Python爬虫项目
2025年爬虫实战项目pythonpandas开发语言爬虫游戏笔记
一、项目背景与目标在当今电商生态中,价格、销量、评论等商品信息对用户和商家来说至关重要。无论是做数据分析、电商监控,还是构建商品推荐系统,第一步都是:获取真实的商品数据。本项目以京东商城搜索结果页为目标,通过构建一个高效、可复用的商品信息采集爬虫系统,实现对商品名称、价格、店铺、评论数、链接等核心信息的提取。二、技术路线概述我们采用如下技术架构:模块技术选型浏览器自动化Playwright(现代、
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- 信息检索简介——文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介2005年8月17日至9月3日在美国加利福尼亚州伯克莱纳举行了SIGIR国际会议(中文全称“计算机信息retrieval国际会议”),这是信息检索领域的顶级会议之一。该会议由ACM主办,主题涵盖了包括文本处理、搜索引擎、数据挖掘、机器学习、推荐系统等多个热门方向。此次会议是第一次将信息检索作为一个学科,并取得重大突破。本文试图对SIGIR进行一个完整的介绍,阐述
- 这份「零基础」机器学习实战课程,帮你彻底搞懂AI不再迷茫!——深度解析ML-For-Beginners
wylee
人工智能机器学习
引言:告别迷茫,拥抱AI未来在当今科技浪潮之巅,人工智能(AI)无疑是最璀璨的明星。机器学习(MachineLearning),作为AI的核心驱动力,正以前所未有的速度渗透到我们生活的方方面面:从智能推荐系统到自动驾驶,从疾病诊断到金融风控,其应用场景几乎无处不在。然而,对于无数渴望投身AI领域的学习者而言,机器学习的门槛似乎一直高不可攀。你是否也曾有过这样的困惑:面对海量的在线课程和资料,眼花缭
- embedding模型有哪些?如何选择合适的embedding模型?
行云流水AI笔记
embedding
embedding模型是一种将数据映射到低维空间的模型,常用于自然语言处理、推荐系统、图像识别等领域。以下是一些常见的embedding模型:Word2Vec:CBOW(ContinuousBag-of-Words):通过上下文预测中心词。Skip-Gram:通过中心词预测上下文。GloVe(GlobalVectorsforWordRepresentation):结合了词频统计和Word2Vec的
- 【重构推荐系统】国产大模型驱动的电商个性化推荐完整实战:架构设计、推理优化与在线部署闭环
观熵
国产大模型部署实战全流程指南重构人工智能Agent智能体落地方案
个人简介作者简介:全栈研发,具备端到端系统落地能力,专注大模型的压缩部署、多模态理解与Agent架构设计。热爱“结构”与“秩序”,相信复杂系统背后总有简洁可控的可能。我叫观熵。不是在控熵,就是在观测熵的流动个人主页:观熵个人邮箱:
[email protected]座右铭:愿科技之光,不止照亮智能,也照亮人心!专栏导航观熵系列专栏导航:AI前沿探索:从大模型进化、多模态交互、AIGC内容生成,到
- Python爬虫实战:全方位爬取知乎学习板块问答数据
Python爬虫项目
2025年爬虫实战项目python爬虫学习开发语言scrapy游戏
1.项目背景与爬取目标知乎是中国最大的知识问答社区,聚集了大量高质量的学习资源和经验分享。爬取知乎“学习”板块的问答数据,可以为学习资料整理、舆情分析、推荐系统开发等提供数据支持。本项目目标:爬取“学习”话题下的热门问答列表抓取每个问答的标题、作者、回答内容、点赞数、评论数等详细信息实现动态加载内容的抓取,包含图片和富文本避免被反爬机制限制,保证数据采集稳定结合数据分析,为后续应用打基础2.知乎“
- End-To-End 之于推荐-kuaishou OneRec 笔记
ASKED_2019
RecSys笔记
核心思想OneRec提出了一种统一的生成式推荐系统架构,打破了传统“召回-粗排-精排”级联式推荐流程,使用单一生成模型同时完成召回与排序任务。该系统由快手团队研发,并成功部署于短视频主场景。OnlineA/BTest表现:模型总观看时长平均观看时长OneRec-1B+IPA+1.68%+6.56%一Input处理Userpositiveactionsequence,将短视频的多模态表征,通过量化的
- 计算机毕业设计项目、管理系统、可视化大屏、大数据分析、协同过滤、推荐系统、SSM、SpringBoot、Spring、Mybatis、小程序项目编号1000-1499
lonzgzhouzhou
spring课程设计springboot
大家好,我是DeBug,很高兴你能来阅读!作为一名热爱编程的程序员,我希望通过这些教学笔记与大家分享我的编程经验和知识。在这里,我将会结合实际项目经验,分享编程技巧、最佳实践以及解决问题的方法。无论你是初学者还是有一定经验的程序员,我都希望能够为你提供有价值的内容,帮助你更好地理解编程世界。让我们一起探索编程的乐趣,一起成长,一起学习,谢谢你们的支持与关注!【源码咨询】可接Java程序设计,Bug
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin