Flume是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中。轻量,配置简单,适用于各种日志收集,并支持 Failover和负载均衡。并且它拥有非常丰富的组件。Flume采用的是三层架构:Agent层,Collector层和Store层,每一层均可水平拓展。其中Agent包含Source,Channel和 Sink,三者组建了一个Agent。三者的职责如下所示:
- Source:用来消费(收集)数据源到Channel组件中
- Channel:中转临时存储,保存所有Source组件信息
- Sink:从Channel中读取,读取成功后会删除Channel中的信息
Flume单节点模式架构图(官方图)如下图所示:
图中表示,从外部系统(Web Server)中收集产生的日志,然后通过Flume的Agent的Source组件将数据发送到临时存储Channel组件,最后传递给Sink组件,Sink组件直接把数据存储到HDFS文件系统中。
本文使用的flume版本为目前最新版1.8,分别介绍了单节点配置以及集群模式配置。在配置之前,已经配置好了Hadoop集群。一、单节点模式
1.1 下载安装
[hadoop@hdp01 ~]$ http://mirrors.hust.edu.cn/apache/flume/stable/apache-flume-1.8.0-bin.tar.gz [hadoop@hdp01 ~]$ tar -xzf apache-flume-1.8.0-bin.tar.gz;mv apache-flume-1.8.0-bin /u01/flume
1.2 设置环境变量
[hadoop@hdp01 ~]$ vi .bash_profile export FLUME_HOME=/u01/flume export PATH=$PATH:$FLUME_HOME/bin
1.3 创建Flume配置文件
[hadoop@hdp01 ~]$ vi /u01/flume/conf/flume-hdfs.conf #Agent Name a1.sources = so1 a1.sinks = si1 a1.channels = ch1 #Setting Source so1 a1.sources.so1.type = spooldir a1.sources.so1.spoolDir = /u01/flume/loghdfs a1.sources.so1.channels = ch1 a1.sources.so1.fileHeader = false a1.sources.so1.interceptors = i1 a1.sources.so1.interceptors.i1.type = timestamp a1.sources.so1.ignorePattern = ^(.)*\\.tmp$ #Setting Sink With HDFS a1.sinks.si1.channel = ch1 a1.sinks.si1.type = hdfs a1.sinks.si1.hdfs.path = hdfs://NNcluster/flume/input a1.sinks.si1.hdfs.fileType = DataStream a1.sinks.si1.hdfs.writeFormat = Text a1.sinks.si1.hdfs.rollInternal = 1 a1.sinks.si1.hdfs.filePrefix = %Y-%m-%d a1.sinks.si1.hdfs.fileSuffix= .txt #Binding Source and Sink to Channel a1.channels.ch1.type = file a1.channels.ch1.checkpointDir = /u01/flume/loghdfs/point a1.channels.ch1.dataDirs = /u01/flume/loghdfs [hadoop@hdp01 ~]$ cp /u01/flume/conf/flume-env.sh.template /u01/flume/conf/flume-env.sh [hadoop@hdp01 ~]$ vi /u01/flume/conf/flume-env.sh export JAVA_HOME=/usr/java/jdk1.8.0_152 --创建相关目录 [hadoop@hdp01 ~]$ mkdir -p /u01/flume/loghdfs/point --链接hadoop配置文件☞/u01/flume/conf 现有的Hadoop环境配置了NameNode高可用,必须链接相关配置,否则flume不知道往哪存数据。 [hadoop@hdp01 ~]$ ln -s /u01/hadoop/etc/hadoop/core-site.xml /u01/flume/conf/core-site.xml [hadoop@hdp01 ~]$ ln -s /u01/hadoop/etc/hadoop/hdfs-site.xml /u01/flume/conf/hdfs-site.xml
到此,单节点模式就配置完成。
1.4 启动flume服务[hadoop@hdp01 ~]$ flume-ng agent --conf conf --conf-file /u01/flume/conf/flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,console > /u01/flume/logs/flume-hdfs.log 2>&1 &
注意:命令中的a1表示配置文件中的Agent的Name;而flume的配置文件必须使用绝对路径。
1.5 效果测试
在/u01/flume/loghdfs下面,随便创建一个文件,并写入数据,结果如下图:二、Flume集群模式
Flume集群模式的架构图(官方图)如下图所示:
图中,Flume的存储可以支持多种,这里只列举了HDFS和Kafka(如:存储最新的一周日志,并给Storm系统提供实时日志流)。这里以Oracle的alert日志为例。环境如下表所示:
表中的RAC两个节点的alert日志通过Collector1和Collector2存入HDFS。另外Flume本身提供了Failover机制,可以自动切换和恢复。
2.1 RAC节点安装Flume[Oracle@ebsdb1 ~]$ http://mirrors.hust.edu.cn/apache/flume/stable/apache-flume-1.8.0-bin.tar.gz [Oracle@ebsdb1 ~]$ tar -xzf apache-flume-1.8.0-bin.tar.gz;mv apache-flume-1.8.0-bin /u01/app/oracle/flume
RAC的其他节点也类似安装
2.2 配置RAC节点的Agent
2.2.1 配置ebsdb1的agent[oracle@ebsdb1 ~]$ vi /u01/flume/conf/flume-client.properties #agent name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #set gruop agent1.sinkgroups = g1 #Setting Channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 100000 agent1.channels.c1.transactionCapacity = 100 #Just For Fllowing Error Messgaes #Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight agent1.channels.c1.byteCapacityBufferPercentage=20 agent1.channels.c1.byteCapacity=800000 agent1.channels.c1.keep-alive = 60 #Setting Sources agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /u01/app/oracle/diag/rdbms/prod/prod1/trace/alert_prod1.log agent1.sources.r1.interceptors = i1 i2 agent1.sources.r1.interceptors.i1.type = static agent1.sources.r1.interceptors.i1.key = Type agent1.sources.r1.interceptors.i1.value = LOGIN agent1.sources.r1.interceptors.i2.type = timestamp # Setting Sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = hdp01 agent1.sinks.k1.port = 52020 # Setting Sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = hdp02 agent1.sinks.k2.port = 52020 #Seting Sink Group agent1.sinkgroups.g1.sinks = k1 k2 #Setting Failover agent1.sinkgroups.g1.processor.type = failover agent1.sinkgroups.g1.processor.priority.k1 = 10 agent1.sinkgroups.g1.processor.priority.k2 = 1 agent1.sinkgroups.g1.processor.maxpenalty = 10000
2.2.2 配置ebsdb2的agent
[oracle@ebsdb2 ~]$ vi /u01/flume/conf/flume-client.properties #Setting Agent Name agent1.channels = c1 agent1.sources = r1 agent1.sinks = k1 k2 #Setting Gruop agent1.sinkgroups = g1 #Setting Channel agent1.channels.c1.type = memory agent1.channels.c1.capacity = 100000 agent1.channels.c1.transactionCapacity = 100 #Just For Fllowing Error Messgaes #Space for commit to queue couldn't be acquired. Sinks are likely not keeping up with sources, or the buffer size is too tight# agent1.channels.c1.byteCapacityBufferPercentage=20 agent1.channels.c1.byteCapacity=800000 agent1.channels.c1.keep-alive = 60 #Seting Sources agent1.sources.r1.channels = c1 agent1.sources.r1.type = exec agent1.sources.r1.command = tail -F /u01/app/oracle/diag/rdbms/prod/prod2/trace/alert_prod2.log agent1.sources.r1.interceptors = i1 i2 agent1.sources.r1.interceptors.i1.type = static agent1.sources.r1.interceptors.i1.key = Type agent1.sources.r1.interceptors.i1.value = LOGIN agent1.sources.r1.interceptors.i2.type = timestamp #Settinf Sink1 agent1.sinks.k1.channel = c1 agent1.sinks.k1.type = avro agent1.sinks.k1.hostname = hdp01 agent1.sinks.k1.port = 52020 # Setting Sink2 agent1.sinks.k2.channel = c1 agent1.sinks.k2.type = avro agent1.sinks.k2.hostname = hdp02 agent1.sinks.k2.port = 52020 #Setting Sink Group agent1.sinkgroups.g1.sinks = k1 k2 #Set Failover agent1.sinkgroups.g1.processor.type = failover agent1.sinkgroups.g1.processor.priority.k1 = 10 agent1.sinkgroups.g1.processor.priority.k2 = 1 agent1.sinkgroups.g1.processor.maxpenalty = 10000
2.3 配置Flume的Collector
2.3.1 hdp01的collector配置[hadoop@hdp01 conf]$ vi flume-server.properties #Setting Agent Name a1.sources = r1 a1.channels = c1 a1.sinks = k1 #Setting Channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 #Setting Sources a1.sources.r1.type = avro a1.sources.r1.bind = hdp01 a1.sources.r1.port = 52020 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = Collector a1.sources.r1.interceptors.i1.value = hdp01 a1.sources.r1.channels = c1 #Setting Sink To HDFS a1.sinks.k1.type=hdfs a1.sinks.k1.hdfs.path=hdfs://NNcluster/flume/Oracle/logs a1.sinks.k1.hdfs.fileType=DataStream a1.sinks.k1.hdfs.writeFormat=TEXT a1.sinks.k1.hdfs.rollInterval=1 a1.sinks.k1.channel=c1 a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d a1.sinks.k1.hdfs.fileSuffix=.txt
2.3.2 hdp02的collector配置
[hadoop@hdp02 conf]$ vi flume-server.properties #Setting Agent Name a1.sources = r1 a1.channels = c1 a1.sinks = k1 #Setting Channel a1.channels.c1.type = memory a1.channels.c1.capacity = 1000 a1.channels.c1.transactionCapacity = 100 # Seting Sources a1.sources.r1.type = avro a1.sources.r1.bind = hdp02 a1.sources.r1.port = 52020 a1.sources.r1.interceptors = i1 a1.sources.r1.interceptors.i1.type = static a1.sources.r1.interceptors.i1.key = Collector a1.sources.r1.interceptors.i1.value = hdp02 a1.sources.r1.channels = c1 #Setting Sink To HDFS a1.sinks.k1.type=hdfs a1.sinks.k1.hdfs.path=hdfs://NNcluster/flume/Oracle/logs a1.sinks.k1.hdfs.fileType=DataStream a1.sinks.k1.hdfs.writeFormat=TEXT a1.sinks.k1.hdfs.rollInterval=1 a1.sinks.k1.channel=c1 a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d a1.sinks.k1.hdfs.fileSuffix=.txt
2.4 Flume集群服务启动
2.4.1 启动Flume的Collector[hadoop@hdp01 conf]$ flume-ng agent --conf conf --conf-file /u01/flume/conf/flume-server.properties --name a1 -Dflume.root.logger=INFO,console > /u01/flume/logs/flume-server.log 2>&1 & [hadoop@hdp02 conf]$ flume-ng agent --conf conf --conf-file /u01/flume/conf/flume-server.properties --name a1 -Dflume.root.logger=INFO,console > /u01/flume/logs/flume-server.log 2>&1 &
启动后,可查看flume的日志文件,内容如下图:
2.4.2 启动Flume的Agent[oracle@ebsdb1 bin]$ ./flume-ng agent --conf conf --conf-file /u01/app/oracle/flume/conf/flume-client.properties --name agent1 -Dflume.root.logger=INFO,console > /u01/app/oracle/flume/logs/flume-client.log 2>&1 & [oracle@ebsdb2 bin]$ ./flume-ng agent --conf conf --conf-file /u01/app/oracle/flume/conf/flume-client.properties --name agent1 -Dflume.root.logger=INFO,console > /u01/app/oracle/flume/logs/flume-client.log 2>&1 &
待agent启动完毕后,观察collecter日志,就会发现agent已成功连接到collector,如下图:
2.5 Flume高可用测试
由于collector1配置的权重大于collector2,所以 Collector1优先采集并上传到存储系统。这里假如kill掉collector1,由Collector2负责日志的采集上传工作,看是否上传成功。
接着恢复Collector1节点的Flume服务,再次在Agent1上传文件,发现Collector1恢复优先级别的采集工作。
参考文献:
1、Flume 1.8.0 User Guide