hdu5834 Magic boy Bi Luo with his excited tree(树形dp)

Magic boy Bi Luo with his excited tree

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 723    Accepted Submission(s): 192


Problem Description

 

Bi Luo is a magic boy, he also has a migic tree, the tree has   N  nodes , in each node , there is a treasure, it's value is   V[i], and for each edge, there is a cost   C[i], which means every time you pass the edge   i  , you need to pay   C[i].

You may attention that every   V[i]  can be taken only once, but for some   C[i]  , you may cost severial times.

Now, Bi Luo define   ans[i]  as the most value can Bi Luo gets if Bi Luo starts at node   i.

Bi Luo is also an excited boy, now he wants to know every   ans[i], can you help him?
 


 

Input

 

First line is a positive integer   T(T104)  , represents there are   T  test cases.

Four each test:

The first line contain an integer   N (N105).

The next line contains   N  integers   V[i], which means the treasure’s value of node   i(1V[i]104).

For the next   N1  lines, each contains three integers   u,v,c  , which means node   u  and node   v  are connected by an edge, it's cost is   c(1c104).

You can assume that the sum of   N  will not exceed   106.
 


 

Output

 

For the i-th test case , first output Case #i: in a single line , then output   N  lines , for the i-th line , output   ans[i]  in a single line.
 


 

Sample Input

 

 
   
1 5 4 1 7 7 7 1 2 6 1 3 1 2 4 8 3 5 2
 


 

Sample Output

 

 
   
Case #1: 15 10 14 9 15
 


 

Author

 

UESTC
 


 

Source

 

2016中国大学生程序设计竞赛 - 网络选拔赛


题意:说给一棵树,点和边都有权值,经过一点可以加上该点的权值但最多只加一次,经过边会减去该边权值,问从各个点分别出发最多能获得多少权值。

分析:两个DFS分别在O(n)处理出两种信息,各个结点往其为根的子树走的信息各个结点往父亲走的信息,各个结点就能在O(1)合并这两个信息分别得出各个结点的最终信息。。

参考大神博客:http://www.cnblogs.com/WABoss/p/5771931.html

 

#pragma comment(linker, "/STACK:102400000,102400000")
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int INF = 1e9;
const int MOD = 1e9+7;
#define ll long long
#define CL(a,b) memset(a,b,sizeof(a))
#define lson (i<<1)
#define rson ((i<<1)|1)
#define N 100010
int gcd(int a,int b){return b?gcd(b,a%b):a;}

struct node
{
    int v,c,next;
}e[N<<1];
int tot,head[N];

void add(int u, int v, int c)
{
    e[tot].v = v;
    e[tot].c = c;
    e[tot].next = head[u];
    head[u] = tot++;
}

int val[N];
int d_down[2][N],d_up[2][N];
///dp_down[0/1][u]:u结点往其为根的子树走,并且不走回来/走回来,能得到的最大权值
///dp_up[0/1][u]:u结点往其父亲向上走,并且不走回来/走回来,能得到的最大权值

void dfs1(int u, int fa)
{
    d_down[0][u] = d_down[1][u] = val[u];
    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v = e[i].v;
        if(v == fa) continue;
        dfs1(v, u);
        if(d_down[0][v]-2*e[i].c>0)
            d_down[0][u] += d_down[0][v]-2*e[i].c;
    }
    int mx = 0;
    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v = e[i].v;
        if(v == fa) continue;
        if(d_down[0][v]-2*e[i].c>0)
            mx = max(mx, (d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c));
        else mx = max(mx, d_down[1][v]-e[i].c);
    }
    d_down[1][u] = d_down[0][u] + mx;
}

void dfs2(int u, int fa)
{
    int mx1=0,mx2=0,tmp;
    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v = e[i].v;
        if(v == fa) continue;
        if(d_down[0][v]-2*e[i].c>0)
            tmp=(d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c);
        else tmp=d_down[1][v]-e[i].c;

        if(mx10)
            tmp2=d_down[0][u]-(d_down[0][v]-2*e[i].c);
        else tmp2=d_down[0][u];

        int mx=max(d_up[0][u]-2*e[i].c, tmp2-2*e[i].c);
        mx = max(mx, d_up[0][u]+tmp2-2*e[i].c-val[u]);
        d_up[0][v] = val[v]+max(0, mx);

        if(d_down[0][v]-2*e[i].c>0)
        {
            if(mx1==(d_down[1][v]-e[i].c)-(d_down[0][v]-2*e[i].c))
                tmp = d_down[1][u]-(d_down[1][v]-e[i].c)+mx2;
            else tmp = d_down[1][u]-(d_down[0][v]-2*e[i].c);
        }
        else if(d_down[1][v]-e[i].c>0)
        {
            if(mx1==d_down[1][v]-e[i].c)
                tmp = d_down[1][u]-(d_down[1][v]-e[i].c)+mx2;
            else tmp = d_down[1][u];
        }
        else tmp = d_down[1][u];
        mx = max(d_up[1][u]-e[i].c, tmp-e[i].c);
        mx = max(mx, max(d_up[0][u]+tmp-e[i].c-val[u], d_up[1][u]+tmp2-e[i].c-val[u]));
        d_up[1][v] = val[v]+max(0, mx);
        dfs2(v, u);
    }
}

int main()
{
    int T;
    scanf("%d",&T);
    for(int cas=1; cas<=T; cas++)
    {
        tot = 0;
        CL(head, -1);
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%d",val+i);
        int a,b,c;
        for(int i=1; i


 

你可能感兴趣的:(ACM—dp,各OJ刷题专栏)