- 基于大模型的心力衰竭预测与干预全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录一、引言二、系统概述三、术前阶段(一)患者信息采集与预处理(二)大模型预测心力衰竭风险(三)手术方案制定辅助(四)麻醉方案规划四、术中阶段(一)实时数据监测与传输(二)大模型术中决策支持五、术后阶段(一)术后病情监测与评估(二)并发症风险预测与防控(三)术后护理计划生成六、健康教育与指导(一)个性化教育内容生成(二)康复随访与远程指导七、统计分析与技术验证(一)系统性能评估指标(二)数据分割与
- 数据脱敏中的假名化技术,用python代码实现
zhulangfly
数据安全python数据脱敏假名化
在数据脱敏领域,假名化(Pseudonymization)是一种通过替换真实标识符(如姓名、用户ID、手机号)为“假名”(虚假但符合业务逻辑的标识符),以隐藏数据主体真实身份的技术。与简单的字符替换(如用*隐藏手机号中间四位)不同,假名化的核心特点是保持数据关联性——同一原始数据在不同场景下始终被替换为同一个假名,确保脱敏后的数据仍可用于统计分析、测试验证等需要关联关系的场景。一、假名化技术的核心
- 基于大模型预测原发性醛固酮增多症的综合技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与预处理(二)疾病诊断与分型预测(三)并发症风险预测四、术中阶段(一)实时数据监测与整合(二)手术决策支持(三)麻醉方案动态优化五、术后阶段(一)康复进度监测与预测(二)并发症监测与干预(三)术后护理指导六、统计分析与技术验证(一)模型性能评估指标体系(二)对比研究与临床实效分析七、实验验证证据(一)回顾性病例研究(二)前瞻性临床试验八、健康教
- 程序员必备!Trae CN IDE零基础也能用自然语言生成代码vs VS Code/Cursor
咖啡续命又一天
TraeCNIDEidevscodepythonAI编程编辑器
以下为TraeCNIDE30+个功能的可视化表格与统计分析,结合数据对比和场景化描述,增强文章吸引力和可读性:核心功能对比表(TraeCNIDEvs传统编辑器)功能类别TraeCNIDEVSCode/Cursor优势对比自然语言生成代码✅输入中文指令生成完整代码(如“开发响应式博客”)❌需手动编写代码或依赖插件效率提升10倍:零基础用户3分钟生成项目框架多模态开发✅支持上传Figma/Axure设
- 数据处理与统计分析——11-Pandas-Seaborn可视化
零光速
数据分析pandaspython开发语言数据分析
Seaborn简介Seaborn是一个基于Matplotlib的图形可视化Python库,提供了高度交互式的接口,使用户能够轻松绘制各种吸引人的统计图表。Seaborn可以直接使用Pandas的DataFrame和Series数据进行绘图。1.Seaborn绘制单变量图(1)直方图histplothue:根据另一个分类变量对数据进行分组并显示不同颜色的直方图。kde:是否绘制核密度估计曲线。其他常
- 2025.06.20【pacbio】|PB甲基化分析结果的统计与可视化介绍
文章目录引言1.甲基化分析结果文件简介2.甲基化位点统计分析2.1统计不同类型修饰的数量和分布示例R代码:统计m6A/m4C位点数可视化:不同修饰类型的柱状图2.2甲基化比例分布2.3染色体/基因组分布3.基序(Motif)分析与可视化3.1Motif统计统计不同motif的出现频次3.2motif分布热图(高级)4.覆盖度(测序深度)统计与可视化4.1全基因组覆盖度分布R脚本核心思路ggplot
- 基于大模型预测肾囊肿的技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与整理(二)大模型构建与训练(三)术前预测与方案制定(四)术中决策支持(五)术后管理与预测(六)并发症风险预测与防控(七)健康教育与指导三、技术方案流程图四、统计分析与技术验证方法(一)模型性能评估指标(二)对比实验设计(三)交叉验证与外部验证五、实验验证证据(一)回顾性病例分析(二)前瞻性临床试验六、健康教育与指导方案细化(一)饮食指导(二)运动康复(三
- Python数据分析与可视化理论知识
Python数据分析概述Python数据分析依赖的两个对象表格对象实现统计分析数据预处理Matplotlib数据可视化总结Python数据分析概述数据分析的概述数据分析:用适当的统计分析方法将收集来的大量数据进行分析,将他们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。数据分析的类别:描述性数据分析、探索性数据分析
- Mac电脑-医学绘图-Graphpad Prism
2401_88856700
macosmac医学绘图
GraphPadPrismMac是一款功能强大、易于使用的科学和统计分析工具,适用于各种类型的数据处理和可视化需求。无论您是进行基础研究、临床试验还是学术写作,GraphPadPrismMac都能为您短时间内做出最合适的分析选择,并优雅地绘制和展示您的作品。原文地址:GraphpadPrismMac医学绘图工具
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- Python GUI学生成绩管理系统课程设计
青妍
本文还有配套的精品资源,点击获取简介:本项目是一个基于Python的图形用户界面学生成绩管理系统,通过直观的窗口界面,帮助教师或管理员高效管理学生分数和班级信息。Python语言简洁明了,拥有丰富的库支持,特别适合构建GUI应用。学生将通过本系统学习到用户登录、学生信息管理、成绩录入、统计分析、排名显示、报表生成和数据库操作等实际技能。项目实现涵盖了多种Python技术点,如Tkinter、PyQ
- 11、Python在生命科学研究中的应用与实践
seiji morisako
Python生命科学数据分析
Python在生命科学研究中的应用与实践1引言在生命科学研究中,数据的获取、处理和分析是至关重要的环节。随着数据量的增加和技术的进步,传统的手工分析方法逐渐显得力不从心。Python作为一种功能强大且易于使用的编程语言,逐渐成为生命科学家们进行数据分析的首选工具之一。本文将介绍Python在生命科学研究中的应用,重点讲解如何使用Python进行数据处理、统计分析和可视化。2数据获取与处理2.1数据
- 基于大模型的结节性甲状腺肿预测与综合管理技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习算法
目录一、技术方案大纲(一)研究背景与目的(二)数据采集与预处理(三)大模型构建与训练(四)术前预测与评估(五)术中辅助决策(六)术后管理与预测(七)并发症风险预测与预防策略(八)根据预测制定手术方案(九)麻醉方案制定(十)术后护理方案制定(十一)统计分析与模型评估(十二)技术验证方法(十三)实验验证证据(十四)健康教育与指导(十五)结论与展望二、流程图一、技术方案大纲(一)研究背景与目的阐述结节性
- 基于大模型预测的上睑下垂综合诊疗技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲机器学习深度学习人工智能
目录一、引言二、技术方案概述(一)术前阶段(二)术中阶段(三)术后阶段(四)并发症风险预测(五)根据预测制定手术方案(六)麻醉方案制定(七)术后护理方案(八)统计分析(九)技术验证方法(十)实验验证证据(十一)健康教育与指导三、技术方案流程图四、结论摘要:本研究旨在探讨利用大模型预测技术优化上睑下垂的诊疗流程。通过对术前评估、术中决策、术后护理及并发症风险预测等多方面的深入研究,结合大模型的强大数
- 基于大模型预测单纯性孔源性视网膜脱离的技术方案大纲
LCG元
大模型医疗研究-方案大纲人工智能深度学习机器学习方案大纲
目录一、引言二、技术方案大纲(一)术前阶段(二)术中阶段(三)术后阶段(四)并发症风险预测专项(五)手术方案制定(六)麻醉方案制定(七)术后护理(八)统计分析(九)技术验证方法(十)实验验证证据(十一)健康教育与指导(十二)技术方案流程图三、结论一、引言单纯性孔源性视网膜脱离是眼科常见的致盲性眼病之一,及时准确的诊断、有效的治疗决策以及科学的护理对于患者的预后至关重要。近年来,大模型在医学领域的应
- 基于大模型预测急性横贯性脊髓炎的综合技术方案研究报告大纲
LCG元
大模型医疗研究-方案大纲方案大纲
目录一、引言二、技术方案总体架构三、术前预测与决策四、术中监测与决策支持五、术后护理与康复指导六、统计分析与技术验证七、实验验证与证据支持八、健康教育与指导九、结论与展望一、引言(一)研究背景急性横贯性脊髓炎的临床现状与挑战阐述急性横贯性脊髓炎的发病率、致残率以及对患者生活质量的严重影响,强调准确预测和精准治疗的重要性。大模型技术在医疗领域的应用前景简述大模型在医学影像分析、疾病诊断与预测等方面的
- 低代码可配置化统计分析平台架构设计
木鱼时刻
低代码数据可视化
1.设计目标本方案旨在构建一个低代码可配置、支持多业务复用、具备计算能力和权限控制的统计分析平台,满足快速搭建数据看板、灵活定义组件等需求。具体如下:配置化生成:通过低代码或零代码的方式,快速生成统计分析页面。多业务场景复用:支持不同业务线通过配置快速搭建专属页面。可扩展性:后续可添加其他组件。权限与安全:支持多级权限控制。2.功能模块2.1计算中心数据源管理:支持数据源接入与管理。数据建模:通过
- 高校评教教师工作量管理系统设计与实现
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
高校评教教师工作量管理系统设计与实现作者:禅与计算机程序设计艺术1.背景介绍1.1高校评教的重要性1.2教师工作量管理的必要性1.3现有系统存在的问题1.3.1数据收集效率低下1.3.2数据统计分析能力不足1.3.3缺乏有效的反馈机制2.核心概念与联系2.1评教指标体系2.1.1教学质量评价指标2.1.2教学工作量统计指标2.1.3科研工作量统计指标2.2工作量计算规则2.2.1教学工作量计算2.
- 将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?
黄卷青灯77
计算机视觉opencv人工智能自动化阈值OTSU
Otsu是一种自动阈值化方法,用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理,能够自动确定一个阈值,将图像中的像素分为黑色和白色两类。Otsu方法的原理Otsu方法的核心思想是将图像的像素分为两类(前景和背景),并通过统计分析找到一个阈值,使得这两类之间的差异最大化。具体步骤如下:计算图像的直方图:统计每个灰度值的像素
- 基于大模型预测老年性白内障的综合技术方案研究大纲
LCG元
大模型医疗研究-方案大纲方案大纲人工智能深度学习机器学习
目录一、引言二、技术方案概述(一)数据收集与预处理(二)大模型构建与训练(三)术前评估与预测(四)手术方案制定(五)麻醉方案优化(六)术后护理指导(七)并发症风险预测与管理(八)统计分析与验证(九)健康教育与指导三、技术方案流程图四、实验验证证据(一)回顾性研究(二)前瞻性试验五、结论摘要:本研究聚焦于运用大模型技术全面介入老年性白内障诊疗流程,涵盖术前精准评估、术中决策辅助、术后护理优化、并发症
- Hive的基本操作技巧
rit8432499
hivehadoop数据仓库
Hive是一个基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。下面是一些Hive的基本操作技巧:创建数据库和表:在Hive中,你可以创建数据库和表。
- 基于大模型预测原发性急性闭角型青光眼的技术方案研究大纲
LCG元
大模型医疗研究-方案大纲人工智能方案大纲深度学习机器学习
目录一、引言二、技术方案概述三、术前阶段(一)数据采集与处理(二)大模型预测(三)手术方案制定(四)麻醉方案确定(五)术前健康教育四、术中阶段(一)实时数据监测与输入(二)手术策略动态调整(三)并发症预警与处理(四)术中健康教育五、术后阶段(一)恢复监测与数据收集(二)并发症管理(三)效果评估与反馈(四)术后护理计划制定(五)术后健康教育六、统计分析与技术验证(一)数据统计分析(二)技术验证方法(
- Spring Boot+MyBatis实现企业级CRM系统:附完整代码与部署教程
糯米导航
文末下载资源springbootmybatis后端
Java+MySQLCRM客户关系管理系统一、系统概述CRM(客户关系管理)系统是企业管理中重要的一环,本文实现的Java+MySQLCRM系统采用MVC架构模式,结合SpringBoot、MyBatis-Plus等技术,实现了客户信息管理、销售机会跟踪、合同管理、统计分析等核心功能。二、系统架构设计1.技术选型后端框架:SpringBoot2.7.10数据访问:MyBatis-Plus3.5.3
- 在线考试系统
程序猿麦小七
毕业设计JavaWebJava后台java数据库开发语言
项目描述临近学期结束,还是毕业设计,你还在做java程序网络编程,期末作业,老师的作业要求觉得大了吗?不知道毕业设计该怎么办?网页功能的数量是否太多?没有合适的类型或系统?等等。这里根据疫情当下,你想解决的问题,今天给在家介绍一篇在线考试系统的设计与实现。功能需求在线考试系统现在应用非常广泛,能适用于大、中、小学的学生考试以及试卷的批改和成绩的统计分析中,相对于计算机和外语学科非常实用。但是现在普
- 7-7 矩阵转置 分数 50 作者 马俊 单位 兰州大学
落004
矩阵算法java
矩阵(Matrix)是一个按照矩形阵列排列的复数或实数集合,它是高等代数中的常见工具,也常见于统计分析等应用数学学科中。把矩阵M的行和列互相交换所产生的矩阵称为M的转置矩阵,记作MT,这一过程称为矩阵的转置。设矩阵M为n×m阶矩阵(即矩阵M有n行m列),则矩阵M的转置矩阵MT为m×n阶矩阵;记矩阵M的第i行第j列的元素为aij,矩阵MT的第i行第j列的元素为aijT,则下列等式恒成立:aijT=a
- 【数据分析】第四章 pandas简介(1)
神秘敲码人
数据分析pythonpandas
4.1pandas:Python数据分析库pandas是一个专门为数据分析量身定制的开源Python库。在当今的Python数据科学界,无论是专业研究还是进行统计分析和决策,pandas都是每一位数据专业人士不可或缺的基础工具。这个强大的库由WesMcKinney于2008年开始设计和开发。到了2012年,他的同事SienChang也加入了开发团队。正是他们二人的共同努力,造就了Python社区中
- redis实现滑动窗口
程序员孟猛
redis
Redis提供了一些基础数据结构,如列表(List)、有序集合(SortedSet)和哈希表(Hash),可以用来实现滑动窗口算法。滑动窗口是一种流量控制或统计分析的方法,它定义了一个固定大小的时间窗口,在该窗口内对数据进行计数或累计,窗口随着时间向前移动。以下是如何使用Redis实现滑动窗口的两种常见方法:###方法一:使用RedisLists实现定长滑动窗口适用于简单场景,如记录最近N个元素,
- 阿里Sentinel学习与实践总结:流量控制、熔断降级全解析
张彦峰ZYF
微服务架构与DDD学习指南sentinel学习分布式后端
目录一、Sentinel概述(一)基本背景(二)常见降级方式与Sentinel定位限流降级熔断降级开关降级Sentinel降级定位(三)为什么选择Sentinel,Sentinel与Hystrix的对比二、一些概念和核心类的介绍三、Sentinel基于滑动窗口的实时指标数据统计分析(一)整体分析(二)具体代码验证举例(三)内部实现分析BucketMetricBucket滑动窗口WindowWrap
- Python中三种不同包读取csv文件数据的方式:numpy、pandas、csv
Studying 开龙wu
pythonnumpypandas
数据操作能力对比:(1)numpy:适合进行高效的数值计算和矩阵操作,但不支持复杂的数据操作(如数据筛选、分组等)。(2)pandas:提供了丰富的数据操作功能,如数据筛选、分组、排序、统计分析等,适合进行复杂的数据处理和分析。1.使用numpy的loadtxt函数读取CSV文件fromnumpyimportloadtxt#使用numpy导入CSV数据filename='data.csv'with
- 大模型在先天性肌性斜颈诊疗全流程中的应用研究报告
LCG元
围术期危险因子预测模型研究人工智能算法
目录一、引言1.1研究背景与目的1.2先天性肌性斜颈概述二、大模型在术前的预测应用2.1病情评估2.2手术风险预测三、大模型在术中的应用3.1实时手术导航与辅助决策3.2应对突发状况四、大模型对并发症风险的预测4.1常见并发症分析4.2大模型预测原理与方法五、基于大模型预测制定治疗方案5.1手术方案定制5.2麻醉方案选择六、术后护理与大模型的作用6.1伤口护理指导6.2康复训练计划制定七、统计分析
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo