Visual ModelQ 控制系统仿真


了解

参考教程
http://slidegur.com/doc/5058551/visual-modelq
软件下载:
链接:https://pan.baidu.com/s/1EMowQyk_YVK2rcdRUcnmgA
提取码:3hwn
失效请提醒

Visual ModelQ 控制系统仿真_第1张图片

Visual ModelQ 控制系统仿真_第2张图片软件下载地址关注本博客留言即可获取。


PID控制代码实现

/* 1.比例环节Kp,作用是加快系统的响应速度,提高系统的调节精度,副作用是会导致超调;

   2.积分环节Ki,作用是消除稳态误差,副作用是导致积分饱和现象;

   3.微分环节Kd,作用是改善系统的动态性能,副作用是延长系统的调节时间。

  理解了上述问题,那么就可以“辩证施治,对症下药”了。比如说,如果系统响应速度慢,我们就加大Kp的取值,如果超调量过大
  我们就减小Kp的取值等等。可是问题这些语言的描述该如何用数学形式表达出来呢。我们所知道的,反馈系统的实质就是系统的输
  出量作为反馈量与系统的输入量进行作差,从而得到系统的误差e,那么这个误差e就能够反应目前系统所处的状态。误差e可以表
  明目前系统的输出状态到底偏离要求多少。而误差e的变化律ec,表示误差变化的速度。这样,我们可以根据这两个量的状态来分
  析三个参数此时应该如何取值,假如e为负方向比较大,ec也为负方向增大状态,此时比例环节要大一些,从而加快调节速度,而
  积分环节要小一些,甚至不加积分环节,从而防止负方向上出现饱和积分的现象。微分环节可以稍加一些,在不影响调节时间的情况
  下,起到改善系统动态性能的作用*/
#include 

struct _pid{
    float SetSpeed;            //定义设定值
    float ActualSpeed;        //定义实际值
    float err;                //定义偏差值
    float err_last;            //定义上一个偏差值
    float Kp,Ki,Kd;            //定义比例、积分、微分系数
    float voltage;          //定义电压值(控制执行器的变量)
    float integral;            //定义积分值
}pid;

void PID_init(){
    printf("PID_init begin \n");
    pid.SetSpeed=0.0;
    pid.ActualSpeed=0.0;
    pid.err=0.0;
    pid.err_last=0.0;
    pid.voltage=0.0;
    pid.integral=0.0;
    pid.Kp=0.2;
    pid.Ki=0.015;
    pid.Kd=0.2;
    printf("PID_init end \n");
}

float PID_realize(float speed){
    pid.SetSpeed=speed;
    pid.err=pid.SetSpeed-pid.ActualSpeed;
    pid.integral+=pid.err;
    pid.voltage=pid.Kp*pid.err+pid.Ki*pid.integral+pid.Kd*(pid.err-pid.err_last);
    pid.err_last=pid.err;
    pid.ActualSpeed=pid.voltage*1.0;
    return pid.ActualSpeed;
}

int main(){
    printf("System begin \n");
    PID_init();
    int count=0;
    while(count<1000)
    {
        float speed=PID_realize(200.0);
        printf("%f\n",speed);
        count++;
    }
return 0;
}

struct _pid{
    float SetSpeed;            //定义设定值
    float ActualSpeed;        //定义实际值
    float err;                //定义偏差值
    float err_next;            //定义上一个偏差值
    float err_last;            //定义最上前的偏差值
    float Kp,Ki,Kd;            //定义比例、积分、微分系数
}pid;

void PID_init(){
    pid.SetSpeed=0.0;
    pid.ActualSpeed=0.0;
    pid.err=0.0;
    pid.err_last=0.0;
    pid.err_next=0.0;
    pid.Kp=0.2;
    pid.Ki=0.015;
    pid.Kd=0.2;
}

float PID_realize(float speed){
    pid.SetSpeed=speed;
    pid.err=pid.SetSpeed-pid.ActualSpeed;
    float incrementSpeed=pid.Kp*(pid.err-pid.err_next)+pid.Ki*pid.err+pid.Kd*(pid.err-2*pid.err_next+pid.err_last);
    pid.ActualSpeed+=incrementSpeed;
    pid.err_last=pid.err_next;
    pid.err_next=pid.err;
    return pid.ActualSpeed;
}

int main(){
    PID_init();
    int count=0;
    while(count<1000)
    {
        float speed=PID_realize(200.0);
        printf("%f\n",speed);
        count++;
    }
    return 0;
}

/*变积分PID的基本思想是设法改变积分项的累加速度,使其与偏差大小相对应:偏差越大,积分越慢; 偏差越小,积分越快。

   这里给积分系数前加上一个比例值index:

   当abs(err)<180时,index=1;

   当180200时,index=0;

   最终的比例环节的比例系数值为ki*index;

   具体PID实现代码如下:*/

    pid.Kp=0.4;
    pid.Ki=0.2;    //增加了积分系数
    pid.Kd=0.2;

 

   float PID_realize(float speed){
    float index;
    pid.SetSpeed=speed;
    pid.err=pid.SetSpeed-pid.ActualSpeed;

    if(abs(pid.err)>200)           //变积分过程
    {
    index=0.0;
    }else if(abs(pid.err)<180){
    index=1.0;
    pid.integral+=pid.err;
    }else{
    index=(200-abs(pid.err))/20;
    pid.integral+=pid.err;
    }
    pid.voltage=pid.Kp*pid.err+index*pid.Ki*pid.integral+pid.Kd*(pid.err-pid.err_last);

    pid.err_last=pid.err;
    pid.ActualSpeed=pid.voltage*1.0;
    return pid.ActualSpeed;
}

你可能感兴趣的:(机器人控制)