测试 minpy gpu加速 numpy 矩阵相乘 matmul matrix multiplication

这篇文章的测试不准确,可能是minpy和numpy同时用出的问题,现在最新的测试在下面这篇文章中
https://blog.csdn.net/DarrenXf/article/details/86305215
因为觉得这是整个测试过程,就没有删除这篇文章.
测试minpy 调用gpu 加速numpy的矩阵相乘.

main.py

#!/usr/bin/python
# -*- coding: utf-8 -*-
#####################################
# File name : main.py
# Create date : 2019-01-05 17:11
# Modified date : 2019-01-08 18:01
# Author : DARREN
# Describe : not set
# Email : [email protected]
#####################################
from __future__ import division
from __future__ import print_function

import time
import numpy as np
import numpy.random as random
import minpy.numpy as mnp
import matplotlib.pyplot as plt

def _plot_record(record):
    _plot_a_key(record, "numpy", "minpy")
    _plot_key(record,"acceleration")

def _plot_a_key(record, name1, name2):
    numpy_lt = []
    minpy_lt = []
    steps = []
    for key in record:
        steps.append([key])
    steps.sort()

    for i in range(len(steps)):
        step_dic = record[steps[i][0]]
        numpy_value = step_dic[name1]
        numpy_lt.append(numpy_value)
        minpy_value = step_dic[name2]
        minpy_lt.append(minpy_value)

    numpy_lt = np.array(numpy_lt)
    minpy_lt = np.array(minpy_lt)
    steps = np.array(steps)
    numpy_line, = plt.plot(steps, numpy_lt)
    minpy_line, = plt.plot(steps, minpy_lt)
    plt.legend(handles=[numpy_line,minpy_line],labels=['use numpy','use minpy'],loc='best')
    full_path_name = "./%s_%s.jpg" % (name1, name2)
#    plt.show()
    plt.savefig(full_path_name)
    plt.close()

def _plot_key(record, name):
    acceleration_lt= []
    steps = []
    for key in record:
        steps.append([key])
    steps.sort()

    for i in range(len(steps)):
        step_dic = record[steps[i][0]]
        acceleration_value = step_dic[name]
        acceleration_lt.append(acceleration_value)

    acceleration_lt = np.array(acceleration_lt)
    steps = np.array(steps)
    acceleration_line, = plt.plot(steps, acceleration_lt)
    plt.legend(handles=[acceleration_line],labels=['acceleartion'],loc='best')
    full_path_name = "./%s.jpg" % (name)
#    plt.show()
    plt.savefig(full_path_name)
    plt.close()

def test_numpy(A,B,i):
    s = time.time()
    np.dot(A,B)
    e = time.time()
    take_time = e - s
    return take_time

def test_minpy(A,B,i):
    s = time.time()
    mnp.dot(A,B)
    e = time.time()
    take_time = e - s
    return take_time

def _write_status(file_obj, A, B, i, numpy_take_time, minpy_take_time):
    acceleration  =  numpy_take_time / minpy_take_time
    shape_str = "%s : %s matmul %s" % (A.dtype, A.shape, B.shape)
    numpy_str = "i:%s use numpy:%s" % (i, numpy_take_time)
    minpy_str = "i:%s use minpy:%s" % (i, minpy_take_time)
    acceleration_str = "acceleration:%s" % acceleration

    file_obj.write("%s\n" % shape_str)
    file_obj.write("%s\n" % numpy_str)
    file_obj.write("%s\n" % minpy_str)
    file_obj.write("%s\n" % acceleration_str)

    print(shape_str)
    print(numpy_str)
    print(minpy_str)
    print(acceleration_str)

def _record_status(record, i, numpy_take_time, minpy_take_time):
    dic = {}
    dic["numpy"] = numpy_take_time
    dic["minpy"] = minpy_take_time
    dic["acceleration"] =  numpy_take_time / minpy_take_time

    record[i] = dic

def test_numpy_and_minpy():
#    random.seed(0)
    file_obj = open("./output","w")
    record = {}
    for i in range(1,3000):
        A = random.randn(i, i)
        B = random.randn(i, i)
        numpy_take_time = test_numpy(A,B,i)
        minpy_take_time = test_minpy(A,B,i)
        _write_status(file_obj,A,B,i,numpy_take_time,minpy_take_time)
        _record_status(record, i, numpy_take_time, minpy_take_time)

    file_obj.close()
    _plot_record(record)

if __name__ == '__main__':
    test_numpy_and_minpy()

下面是我机器中的cpu和gpu型号

31.4 GiB
Intel® Core™ i7-8700K CPU @ 3.70GHz × 12 
GeForce GTX 1080 Ti/PCIe/SSE2
64-bit

randn 返回的是float64

测试都用的方阵
下面是1-3000的结果.
numpy minpy 求矩阵相乘的时间对比图
测试 minpy gpu加速 numpy 矩阵相乘 matmul matrix multiplication_第1张图片

可以看出来从1000开始gpu和cpu之间就有了差距.
下面是1-3000的加速效果图
numpy_take_time / minpy_take_time
测试 minpy gpu加速 numpy 矩阵相乘 matmul matrix multiplication_第2张图片

能看出gpu处理矩阵相乘,能够起到加速的效果.矩阵行数3000以内大概能加速六七倍. 输出太长放到下面.
3000-10000的结果.
numpy minpy 求矩阵相乘的时间对比图

测试 minpy gpu加速 numpy 矩阵相乘 matmul matrix multiplication_第3张图片
然后3000-1000的加速效果图
测试 minpy gpu加速 numpy 矩阵相乘 matmul matrix multiplication_第4张图片
6000的时候会掉下来不知道为啥,可以重复测试下,看是否一定会这样.

1-3000 output

float64 : (1, 1) matmul (1, 1)
i:1 use numpy:4.05311584473e-06
i:1 use minpy:0.000562906265259
acceleration:0.00720033883947
float64 : (2, 2) matmul (2, 2)
i:2 use numpy:1.62124633789e-05
i:2 use minpy:0.0029399394989
acceleration:0.00551455680804
float64 : (3, 3) matmul (3, 3)
i:3 use numpy:4.05311584473e-06
i:3 use minpy:0.000226974487305
acceleration:0.0178571428571
float64 : (4, 4) matmul (4, 4)
i:4 use numpy:5.00679016113e-06
i:4 use minpy:0.000178813934326
acceleration:0.028
float64 : (5, 5) matmul (5, 5)
i:5 use numpy:5.00679016113e-06
i:5 use minpy:0.000164985656738
acceleration:0.0303468208092
float64 : (6, 6) matmul (6, 6)
i:6 use numpy:5.00679016113e-06
i:6 use minpy:0.000138998031616
acceleration:0.0360205831904
float64 : (7, 7) matmul (7, 7)
i:7 use numpy:4.05311584473e-06
i:7 use minpy:0.000137090682983
acceleration:0.0295652173913
float64 : (8, 8) matmul (8, 8)
i:8 use numpy:5.00679016113e-06
i:8 use minpy:0.000160932540894
acceleration:0.0311111111111
float64 : (9, 9) matmul (9, 9)
i:9 use numpy:5.00679016113e-06
i:9 use minpy:0.000140905380249
acceleration:0.0355329949239
float64 : (10, 10) matmul (10, 10)
i:10 use numpy:4.05311584473e-06
i:10 use minpy:0.000133991241455
acceleration:0.0302491103203
float64 : (11, 11) matmul (11, 11)
i:11 use numpy:4.05311584473e-06
i:11 use minpy:0.000207901000977
acceleration:0.019495412844
float64 : (12, 12) matmul (12, 12)
i:12 use numpy:4.05311584473e-06
i:12 use minpy:0.000197172164917
acceleration:0.0205562273277
float64 : (13, 13) matmul (13, 13)
i:13 use numpy:3.09944152832e-06
i:13 use minpy:0.000149965286255
acceleration:0.0206677265501
float64 : (14, 14) matmul (14, 14)
i:14 use numpy:2.86102294922e-06
i:14 use minpy:0.000213861465454
acceleration:0.0133779264214
float64 : (15, 15) matmul (15, 15)
i:15 use numpy:4.05311584473e-06
i:15 use minpy:0.000186920166016
acceleration:0.0216836734694
float64 : (16, 16) matmul (16, 16)
i:16 use numpy:3.09944152832e-06
i:16 use minpy:0.000194072723389
acceleration:0.0159705159705
float64 : (17, 17) matmul (17, 17)
i:17 use numpy:2.86102294922e-06
i:17 use minpy:0.000167846679688
acceleration:0.0170454545455
float64 : (18, 18) matmul (18, 18)
i:18 use numpy:2.86102294922e-06
i:18 use minpy:0.000200986862183
acceleration:0.0142348754448
float64 : (19, 19) matmul (19, 19)
i:19 use numpy:1.90734863281e-05
i:19 use minpy:0.000169038772583
acceleration:0.112834978843
float64 : (20, 20) matmul (20, 20)
i:20 use numpy:1.69277191162e-05
i:20 use minpy:0.0001540184021
acceleration:0.109907120743
float64 : (21, 21) matmul (21, 21)
i:21 use numpy:1.81198120117e-05
i:21 use minpy:0.000185966491699
acceleration:0.0974358974359
float64 : (22, 22) matmul (22, 22)
i:22 use numpy:5.00679016113e-06
i:22 use minpy:0.000148057937622
acceleration:0.0338164251208
float64 : (23, 23) matmul (23, 23)
i:23 use numpy:7.15255737305e-06
i:23 use minpy:0.0001380443573
acceleration:0.0518134715026
float64 : (24, 24) matmul (24, 24)
i:24 use numpy:6.19888305664e-06
i:24 use minpy:0.000134944915771
acceleration:0.0459363957597
float64 : (25, 25) matmul (25, 25)
i:25 use numpy:3.81469726562e-06
i:25 use minpy:0.000137090682983
acceleration:0.0278260869565
float64 : (26, 26) matmul (26, 26)
i:26 use numpy:3.81469726562e-06
i:26 use minpy:0.000137090682983
acceleration:0.0278260869565
float64 : (27, 27) matmul (27, 27)
i:27 use numpy:5.96046447754e-06
i:27 use minpy:0.0001380443573
acceleration:0.0431778929188
float64 : (28, 28) matmul (28, 28)
i:28 use numpy:4.05311584473e-06
i:28 use minpy:0.000138998031616
acceleration:0.0291595197256
float64 : (29, 29) matmul (29, 29)
i:29 use numpy:5.00679016113e-06
i:29 use minpy:0.000134944915771
acceleration:0.0371024734982
float64 : (30, 30) matmul (30, 30)
i:30 use numpy:5.00679016113e-06
i:30 use minpy:0.000134944915771
acceleration:0.0371024734982
float64 : (31, 31) matmul (31, 31)
i:31 use numpy:5.96046447754e-06
i:31 use minpy:0.000133991241455
acceleration:0.0444839857651
float64 : (32, 32) matmul (32, 32)
i:32 use numpy:5.00679016113e-06
i:32 use minpy:0.000137090682983
acceleration:0.0365217391304
float64 : (33, 33) matmul (33, 33)
i:33 use numpy:6.91413879395e-06
i:33 use minpy:0.000135898590088
acceleration:0.0508771929825
float64 : (34, 34) matmul (34, 34)
i:34 use numpy:6.19888305664e-06
i:34 use minpy:0.0001380443573
acceleration:0.0449050086356
float64 : (35, 35) matmul (35, 35)
i:35 use numpy:7.15255737305e-06
i:35 use minpy:0.000136852264404
acceleration:0.0522648083624
float64 : (36, 36) matmul (36, 36)
i:36 use numpy:5.96046447754e-06
i:36 use minpy:0.000136852264404
acceleration:0.0435540069686
float64 : (37, 37) matmul (37, 37)
i:37 use numpy:7.15255737305e-06
i:37 use minpy:0.000153064727783
acceleration:0.0467289719626
float64 : (38, 38) matmul (38, 38)
i:38 use numpy:7.15255737305e-06
i:38 use minpy:0.000166893005371
acceleration:0.0428571428571
float64 : (39, 39) matmul (39, 39)
i:39 use numpy:1.00135803223e-05
i:39 use minpy:0.000187158584595
acceleration:0.0535031847134
float64 : (40, 40) matmul (40, 40)
i:40 use numpy:1.00135803223e-05
i:40 use minpy:0.000142097473145
acceleration:0.0704697986577
float64 : (41, 41) matmul (41, 41)
i:41 use numpy:8.10623168945e-06
i:41 use minpy:0.000141859054565
acceleration:0.0571428571429
float64 : (42, 42) matmul (42, 42)
i:42 use numpy:8.10623168945e-06
i:42 use minpy:0.000140905380249
acceleration:0.0575296108291
float64 : (43, 43) matmul (43, 43)
i:43 use numpy:1.09672546387e-05
i:43 use minpy:0.000176906585693
acceleration:0.0619946091644
float64 : (44, 44) matmul (44, 44)
i:44 use numpy:8.10623168945e-06
i:44 use minpy:0.000141859054565
acceleration:0.0571428571429
float64 : (45, 45) matmul (45, 45)
i:45 use numpy:1.00135803223e-05
i:45 use minpy:0.000141143798828
acceleration:0.0709459459459
float64 : (46, 46) matmul (46, 46)
i:46 use numpy:1.19209289551e-05
i:46 use minpy:0.000137805938721
acceleration:0.0865051903114
float64 : (47, 47) matmul (47, 47)
i:47 use numpy:1.09672546387e-05
i:47 use minpy:0.000140905380249
acceleration:0.077834179357
float64 : (48, 48) matmul (48, 48)
i:48 use numpy:1.00135803223e-05
i:48 use minpy:0.000142812728882
acceleration:0.0701168614357
float64 : (49, 49) matmul (49, 49)
i:49 use numpy:1.09672546387e-05
i:49 use minpy:0.000141143798828
acceleration:0.0777027027027
float64 : (50, 50) matmul (50, 50)
i:50 use numpy:1.09672546387e-05
i:50 use minpy:0.000144958496094
acceleration:0.0756578947368
float64 : (51, 51) matmul (51, 51)
i:51 use numpy:1.4066696167e-05
i:51 use minpy:0.000144958496094
acceleration:0.0970394736842
float64 : (52, 52) matmul (52, 52)
i:52 use numpy:1.21593475342e-05
i:52 use minpy:0.000141859054565
acceleration:0.0857142857143
float64 : (53, 53) matmul (53, 53)
i:53 use numpy:1.28746032715e-05
i:53 use minpy:0.000144004821777
acceleration:0.0894039735099
float64 : (54, 54) matmul (54, 54)
i:54 use numpy:1.28746032715e-05
i:54 use minpy:0.000144004821777
acceleration:0.0894039735099
float64 : (55, 55) matmul (55, 55)
i:55 use numpy:1.59740447998e-05
i:55 use minpy:0.000141859054565
acceleration:0.112605042017
float64 : (56, 56) matmul (56, 56)
i:56 use numpy:1.50203704834e-05
i:56 use minpy:0.000139951705933
acceleration:0.107325383305
float64 : (57, 57) matmul (57, 57)
i:57 use numpy:1.59740447998e-05
i:57 use minpy:0.000138998031616
acceleration:0.114922813036
float64 : (58, 58) matmul (58, 58)
i:58 use numpy:1.50203704834e-05
i:58 use minpy:0.000147104263306
acceleration:0.102106969206
float64 : (59, 59) matmul (59, 59)
i:59 use numpy:1.69277191162e-05
i:59 use minpy:0.000147819519043
acceleration:0.114516129032
float64 : (60, 60) matmul (60, 60)
i:60 use numpy:1.90734863281e-05
i:60 use minpy:0.000298976898193
acceleration:0.0637958532695
float64 : (61, 61) matmul (61, 61)
i:61 use numpy:2.40802764893e-05
i:61 use minpy:0.000262022018433
acceleration:0.0919017288444
float64 : (62, 62) matmul (62, 62)
i:62 use numpy:1.90734863281e-05
i:62 use minpy:0.000216960906982
acceleration:0.0879120879121
float64 : (63, 63) matmul (63, 63)
i:63 use numpy:2.00271606445e-05
i:63 use minpy:0.000174045562744
acceleration:0.115068493151
float64 : (64, 64) matmul (64, 64)
i:64 use numpy:1.81198120117e-05
i:64 use minpy:0.000151872634888
acceleration:0.119309262166
float64 : (65, 65) matmul (65, 65)
i:65 use numpy:0.00897216796875
i:65 use minpy:0.00435209274292
acceleration:2.06157554509
float64 : (66, 66) matmul (66, 66)
i:66 use numpy:0.0143010616302
i:66 use minpy:0.00830793380737
acceleration:1.7213740458
float64 : (67, 67) matmul (67, 67)
i:67 use numpy:0.0134129524231
i:67 use minpy:0.00657105445862
acceleration:2.04121766264
float64 : (68, 68) matmul (68, 68)
i:68 use numpy:0.00870203971863
i:68 use minpy:0.00947403907776
acceleration:0.918514231069
float64 : (69, 69) matmul (69, 69)
i:69 use numpy:0.00623083114624
i:69 use minpy:0.0107781887054
acceleration:0.578096312518
float64 : (70, 70) matmul (70, 70)
i:70 use numpy:0.00681805610657
i:70 use minpy:0.00875115394592
acceleration:0.779103664351
float64 : (71, 71) matmul (71, 71)
i:71 use numpy:0.0092887878418
i:71 use minpy:0.00873184204102
acceleration:1.06378331149
float64 : (72, 72) matmul (72, 72)
i:72 use numpy:0.0184721946716
i:72 use minpy:0.00949192047119
acceleration:1.94609665428
float64 : (73, 73) matmul (73, 73)
i:73 use numpy:0.00976300239563
i:73 use minpy:0.00849986076355
acceleration:1.14860733219
float64 : (74, 74) matmul (74, 74)
i:74 use numpy:0.00575113296509
i:74 use minpy:0.0080349445343
acceleration:0.715765110828
float64 : (75, 75) matmul (75, 75)
i:75 use numpy:0.0096230506897
i:75 use minpy:0.0108089447021
acceleration:0.890285865537
float64 : (76, 76) matmul (76, 76)
i:76 use numpy:0.00786209106445
i:76 use minpy:0.0112431049347
acceleration:0.699281124753
float64 : (77, 77) matmul (77, 77)
i:77 use numpy:0.0143451690674
i:77 use minpy:0.00811195373535
acceleration:1.76839877733
float64 : (78, 78) matmul (78, 78)
i:78 use numpy:0.0129401683807
i:78 use minpy:0.0108680725098
acceleration:1.19065900316
float64 : (79, 79) matmul (79, 79)
i:79 use numpy:0.00884985923767
i:79 use minpy:0.00945901870728
acceleration:0.93560014115
float64 : (80, 80) matmul (80, 80)
i:80 use numpy:0.0148930549622
i:80 use minpy:0.00908803939819
acceleration:1.63875334488
float64 : (81, 81) matmul (81, 81)
i:81 use numpy:0.0168950557709
i:81 use minpy:0.0107619762421
acceleration:1.56988413567
float64 : (82, 82) matmul (82, 82)
i:82 use numpy:0.0169451236725
i:82 use minpy:0.00797510147095
acceleration:2.12475336323
float64 : (83, 83) matmul (83, 83)
i:83 use numpy:0.00708794593811
i:83 use minpy:0.00671792030334
acceleration:1.05508038471
float64 : (84, 84) matmul (84, 84)
i:84 use numpy:0.00865197181702
i:84 use minpy:0.00933313369751
acceleration:0.927016808869
float64 : (85, 85) matmul (85, 85)
i:85 use numpy:0.0100629329681
i:85 use minpy:0.0107591152191
acceleration:0.935293726594
float64 : (86, 86) matmul (86, 86)
i:86 use numpy:0.0126070976257
i:86 use minpy:0.00853586196899
acceleration:1.4769565946
float64 : (87, 87) matmul (87, 87)
i:87 use numpy:0.01025390625
i:87 use minpy:0.0111811161041
acceleration:0.917073586797
float64 : (88, 88) matmul (88, 88)
i:88 use numpy:0.00878214836121
i:88 use minpy:0.0073869228363
acceleration:1.18887777168
float64 : (89, 89) matmul (89, 89)
i:89 use numpy:0.00852298736572
i:89 use minpy:0.00958895683289
acceleration:0.888833635844
float64 : (90, 90) matmul (90, 90)
i:90 use numpy:7.20024108887e-05
i:90 use minpy:0.000231027603149
acceleration:0.311661506708
float64 : (91, 91) matmul (91, 91)
i:91 use numpy:7.00950622559e-05
i:91 use minpy:0.000240087509155
acceleration:0.291956305859
float64 : (92, 92) matmul (92, 92)
i:92 use numpy:5.41210174561e-05
i:92 use minpy:0.000230073928833
acceleration:0.235233160622
float64 : (93, 93) matmul (93, 93)
i:93 use numpy:5.57899475098e-05
i:93 use minpy:0.000233173370361
acceleration:0.239263803681
float64 : (94, 94) matmul (94, 94)
i:94 use numpy:5.00679016113e-05
i:94 use minpy:0.000230073928833
acceleration:0.217616580311
float64 : (95, 95) matmul (95, 95)
i:95 use numpy:5.60283660889e-05
i:95 use minpy:0.000356912612915
acceleration:0.156980627923
float64 : (96, 96) matmul (96, 96)
i:96 use numpy:5.41210174561e-05
i:96 use minpy:0.000678062438965
acceleration:0.0798171589311
float64 : (97, 97) matmul (97, 97)
i:97 use numpy:6.19888305664e-05
i:97 use minpy:0.000236034393311
acceleration:0.262626262626
float64 : (98, 98) matmul (98, 98)
i:98 use numpy:5.69820404053e-05
i:98 use minpy:0.00023889541626
acceleration:0.238522954092
float64 : (99, 99) matmul (99, 99)
i:99 use numpy:6.22272491455e-05
i:99 use minpy:0.000236034393311
acceleration:0.263636363636
float64 : (100, 100) matmul (100, 100)
i:100 use numpy:5.57899475098e-05
i:100 use minpy:0.000232934951782
acceleration:0.239508700102
float64 : (101, 101) matmul (101, 101)
i:101 use numpy:6.38961791992e-05
i:101 use minpy:0.000234127044678
acceleration:0.272912423625
float64 : (102, 102) matmul (102, 102)
i:102 use numpy:5.00679016113e-05
i:102 use minpy:0.000239849090576
acceleration:0.208747514911
float64 : (103, 103) matmul (103, 103)
i:103 use numpy:6.48498535156e-05
i:103 use minpy:0.000236988067627
acceleration:0.273641851107
float64 : (104, 104) matmul (104, 104)
i:104 use numpy:6.22272491455e-05
i:104 use minpy:0.000234842300415
acceleration:0.264974619289
float64 : (105, 105) matmul (105, 105)
i:105 use numpy:6.41345977783e-05
i:105 use minpy:0.000236988067627
acceleration:0.270623742455
float64 : (106, 106) matmul (106, 106)
i:106 use numpy:6.91413879395e-05
i:106 use minpy:0.00146007537842
acceleration:0.0473546701502
float64 : (107, 107) matmul (107, 107)
i:107 use numpy:7.89165496826e-05
i:107 use minpy:0.00418519973755
acceleration:0.0188561011735
float64 : (108, 108) matmul (108, 108)
i:108 use numpy:8.20159912109e-05
i:108 use minpy:0.00987195968628
acceleration:0.00830797468966
float64 : (109, 109) matmul (109, 109)
i:109 use numpy:7.5101852417e-05
i:109 use minpy:0.000226020812988
acceleration:0.332278481013
float64 : (110, 110) matmul (110, 110)
i:110 use numpy:7.70092010498e-05
i:110 use minpy:0.000213146209717
acceleration:0.36129753915
float64 : (111, 111) matmul (111, 111)
i:111 use numpy:7.60555267334e-05
i:111 use minpy:0.0002121925354
acceleration:0.358426966292
float64 : (112, 112) matmul (112, 112)
i:112 use numpy:7.89165496826e-05
i:112 use minpy:0.000218152999878
acceleration:0.36174863388
float64 : (113, 113) matmul (113, 113)
i:113 use numpy:7.41481781006e-05
i:113 use minpy:0.000251054763794
acceleration:0.29534662868
float64 : (114, 114) matmul (114, 114)
i:114 use numpy:8.01086425781e-05
i:114 use minpy:0.000246047973633
acceleration:0.325581395349
float64 : (115, 115) matmul (115, 115)
i:115 use numpy:7.79628753662e-05
i:115 use minpy:0.000247955322266
acceleration:0.314423076923
float64 : (116, 116) matmul (116, 116)
i:116 use numpy:7.20024108887e-05
i:116 use minpy:0.00024676322937
acceleration:0.291787439614
float64 : (117, 117) matmul (117, 117)
i:117 use numpy:8.17775726318e-05
i:117 use minpy:0.000247001647949
acceleration:0.331081081081
float64 : (118, 118) matmul (118, 118)
i:118 use numpy:7.48634338379e-05
i:118 use minpy:0.000249147415161
acceleration:0.3004784689
float64 : (119, 119) matmul (119, 119)
i:119 use numpy:8.70227813721e-05
i:119 use minpy:0.000250101089478
acceleration:0.34795042898
float64 : (120, 120) matmul (120, 120)
i:120 use numpy:8.39233398438e-05
i:120 use minpy:0.000250101089478
acceleration:0.335557673975
float64 : (121, 121) matmul (121, 121)
i:121 use numpy:8.29696655273e-05
i:121 use minpy:0.000253915786743
acceleration:0.32676056338
float64 : (122, 122) matmul (122, 122)
i:122 use numpy:8.39233398438e-05
i:122 use minpy:0.00164103507996
acceleration:0.0511404910649
float64 : (123, 123) matmul (123, 123)
i:123 use numpy:0.000102996826172
i:123 use minpy:0.0125169754028
acceleration:0.00822857142857
float64 : (124, 124) matmul (124, 124)
i:124 use numpy:0.000579118728638
i:124 use minpy:0.000300884246826
acceleration:1.92472266244
float64 : (125, 125) matmul (125, 125)
i:125 use numpy:0.000108957290649
i:125 use minpy:0.000221967697144
acceleration:0.490870032223
float64 : (126, 126) matmul (126, 126)
i:126 use numpy:8.79764556885e-05
i:126 use minpy:0.000894784927368
acceleration:0.0983213429257
float64 : (127, 127) matmul (127, 127)
i:127 use numpy:9.98973846436e-05
i:127 use minpy:0.000261068344116
acceleration:0.382648401826
float64 : (128, 128) matmul (128, 128)
i:128 use numpy:9.60826873779e-05
i:128 use minpy:0.000257015228271
acceleration:0.373840445269
float64 : (129, 129) matmul (129, 129)
i:129 use numpy:8.89301300049e-05
i:129 use minpy:0.000262022018433
acceleration:0.339399454049
float64 : (130, 130) matmul (130, 130)
i:130 use numpy:0.000102996826172
i:130 use minpy:0.000258922576904
acceleration:0.397790055249
float64 : (131, 131) matmul (131, 131)
i:131 use numpy:0.000109910964966
i:131 use minpy:0.000261068344116
acceleration:0.42100456621
float64 : (132, 132) matmul (132, 132)
i:132 use numpy:0.000104188919067
i:132 use minpy:0.000262022018433
acceleration:0.397634212921
float64 : (133, 133) matmul (133, 133)
i:133 use numpy:0.000108003616333
i:133 use minpy:0.000385999679565
acceleration:0.279802347128
float64 : (134, 134) matmul (134, 134)
i:134 use numpy:9.98973846436e-05
i:134 use minpy:0.00405192375183
acceleration:0.0246543100912
float64 : (135, 135) matmul (135, 135)
i:135 use numpy:0.000113010406494
i:135 use minpy:0.00912714004517
acceleration:0.0123817982342
float64 : (136, 136) matmul (136, 136)
i:136 use numpy:0.000114917755127
i:136 use minpy:0.000252962112427
acceleration:0.454288407163
float64 : (137, 137) matmul (137, 137)
i:137 use numpy:0.000115871429443
i:137 use minpy:0.000279188156128
acceleration:0.415029888984
float64 : (138, 138) matmul (138, 138)
i:138 use numpy:9.91821289062e-05
i:138 use minpy:0.000273942947388
acceleration:0.362053959965
float64 : (139, 139) matmul (139, 139)
i:139 use numpy:0.000108957290649
i:139 use minpy:0.000778913497925
acceleration:0.139883685338
float64 : (140, 140) matmul (140, 140)
i:140 use numpy:0.000111103057861
i:140 use minpy:0.000277996063232
acceleration:0.399656946827
float64 : (141, 141) matmul (141, 141)
i:141 use numpy:0.000112056732178
i:141 use minpy:0.000277996063232
acceleration:0.403087478559
float64 : (142, 142) matmul (142, 142)
i:142 use numpy:0.000101089477539
i:142 use minpy:0.000275850296021
acceleration:0.366464995678
float64 : (143, 143) matmul (143, 143)
i:143 use numpy:0.000102043151855
i:143 use minpy:0.000277042388916
acceleration:0.368330464716
float64 : (144, 144) matmul (144, 144)
i:144 use numpy:0.000108003616333
i:144 use minpy:0.000527858734131
acceleration:0.20460704607
float64 : (145, 145) matmul (145, 145)
i:145 use numpy:0.000132083892822
i:145 use minpy:0.000281095504761
acceleration:0.469889737065
float64 : (146, 146) matmul (146, 146)
i:146 use numpy:0.000119924545288
i:146 use minpy:0.00245189666748
acceleration:0.0489109295994
float64 : (147, 147) matmul (147, 147)
i:147 use numpy:0.000242948532104
i:147 use minpy:0.000876903533936
acceleration:0.277052746058
float64 : (148, 148) matmul (148, 148)
i:148 use numpy:0.000113964080811
i:148 use minpy:0.00143909454346
acceleration:0.0791915175613
float64 : (149, 149) matmul (149, 149)
i:149 use numpy:0.000137090682983
i:149 use minpy:0.000307083129883
acceleration:0.446428571429
float64 : (150, 150) matmul (150, 150)
i:150 use numpy:0.000112056732178
i:150 use minpy:0.000288009643555
acceleration:0.389072847682
float64 : (151, 151) matmul (151, 151)
i:151 use numpy:0.000126838684082
i:151 use minpy:0.000300168991089
acceleration:0.422557585385
float64 : (152, 152) matmul (152, 152)
i:152 use numpy:0.000123023986816
i:152 use minpy:0.000329971313477
acceleration:0.372832369942
float64 : (153, 153) matmul (153, 153)
i:153 use numpy:0.000118970870972
i:153 use minpy:0.00029182434082
acceleration:0.407679738562
float64 : (154, 154) matmul (154, 154)
i:154 use numpy:0.000133991241455
i:154 use minpy:0.000296115875244
acceleration:0.452495974235
float64 : (155, 155) matmul (155, 155)
i:155 use numpy:0.000141859054565
i:155 use minpy:0.000297069549561
acceleration:0.477528089888
float64 : (156, 156) matmul (156, 156)
i:156 use numpy:0.00012993812561
i:156 use minpy:0.000303030014038
acceleration:0.428796223446
float64 : (157, 157) matmul (157, 157)
i:157 use numpy:0.000134944915771
i:157 use minpy:0.000297784805298
acceleration:0.453162530024
float64 : (158, 158) matmul (158, 158)
i:158 use numpy:0.000143051147461
i:158 use minpy:0.00104999542236
acceleration:0.136239782016
float64 : (159, 159) matmul (159, 159)
i:159 use numpy:0.00014591217041
i:159 use minpy:0.000967025756836
acceleration:0.150887573964
float64 : (160, 160) matmul (160, 160)
i:160 use numpy:0.000150918960571
i:160 use minpy:0.000895977020264
acceleration:0.168440659925
float64 : (161, 161) matmul (161, 161)
i:161 use numpy:0.000155925750732
i:161 use minpy:0.000343084335327
acceleration:0.454482279361
float64 : (162, 162) matmul (162, 162)
i:162 use numpy:0.000141143798828
i:162 use minpy:0.000309944152832
acceleration:0.455384615385
float64 : (163, 163) matmul (163, 163)
i:163 use numpy:0.000152111053467
i:163 use minpy:0.000305891036987
acceleration:0.497272018706
float64 : (164, 164) matmul (164, 164)
i:164 use numpy:0.000153064727783
i:164 use minpy:0.000303983688354
acceleration:0.503529411765
float64 : (165, 165) matmul (165, 165)
i:165 use numpy:0.000152111053467
i:165 use minpy:0.000309944152832
acceleration:0.490769230769
float64 : (166, 166) matmul (166, 166)
i:166 use numpy:0.000149011611938
i:166 use minpy:0.000518083572388
acceleration:0.287620800736
float64 : (167, 167) matmul (167, 167)
i:167 use numpy:0.0087890625
i:167 use minpy:0.00727009773254
acceleration:1.20893319778
float64 : (168, 168) matmul (168, 168)
i:168 use numpy:0.00758409500122
i:168 use minpy:0.0100910663605
acceleration:0.751565268754
float64 : (169, 169) matmul (169, 169)
i:169 use numpy:0.00531220436096
i:169 use minpy:0.00980496406555
acceleration:0.541787234043
float64 : (170, 170) matmul (170, 170)
i:170 use numpy:0.00761318206787
i:170 use minpy:0.00394582748413
acceleration:1.92942598187
float64 : (171, 171) matmul (171, 171)
i:171 use numpy:0.0129730701447
i:171 use minpy:0.000381946563721
acceleration:33.9656679151
float64 : (172, 172) matmul (172, 172)
i:172 use numpy:0.0173881053925
i:172 use minpy:0.000311136245728
acceleration:55.8858237548
float64 : (173, 173) matmul (173, 173)
i:173 use numpy:0.0163271427155
i:173 use minpy:0.000359058380127
acceleration:45.4721115538
float64 : (174, 174) matmul (174, 174)
i:174 use numpy:0.0173511505127
i:174 use minpy:0.000536918640137
acceleration:32.3161634103
float64 : (175, 175) matmul (175, 175)
i:175 use numpy:0.0159528255463
i:175 use minpy:0.000355958938599
acceleration:44.8164768922
float64 : (176, 176) matmul (176, 176)
i:176 use numpy:0.019867181778
i:176 use minpy:0.000380992889404
acceleration:52.1458072591
float64 : (177, 177) matmul (177, 177)
i:177 use numpy:0.000185966491699
i:177 use minpy:0.00472807884216
acceleration:0.0393323584287
float64 : (178, 178) matmul (178, 178)
i:178 use numpy:0.0138440132141
i:178 use minpy:0.000295877456665
acceleration:46.7896857373
float64 : (179, 179) matmul (179, 179)
i:179 use numpy:0.0140860080719
i:179 use minpy:0.000340938568115
acceleration:41.3153846154
float64 : (180, 180) matmul (180, 180)
i:180 use numpy:0.0130889415741
i:180 use minpy:0.000324010848999
acceleration:40.3966151582
float64 : (181, 181) matmul (181, 181)
i:181 use numpy:0.00480103492737
i:181 use minpy:0.0021071434021
acceleration:2.2784566644
float64 : (182, 182) matmul (182, 182)
i:182 use numpy:0.00741600990295
i:182 use minpy:0.0012640953064
acceleration:5.8666540928
float64 : (183, 183) matmul (183, 183)
i:183 use numpy:0.0160140991211
i:183 use minpy:0.000380992889404
acceleration:42.0325406758
float64 : (184, 184) matmul (184, 184)
i:184 use numpy:0.0158832073212
i:184 use minpy:0.000343084335327
acceleration:46.2953439889
float64 : (185, 185) matmul (185, 185)
i:185 use numpy:0.014995098114
i:185 use minpy:0.000373125076294
acceleration:40.1878594249
float64 : (186, 186) matmul (186, 186)
i:186 use numpy:0.000178098678589
i:186 use minpy:0.000273942947388
acceleration:0.650130548303
float64 : (187, 187) matmul (187, 187)
i:187 use numpy:0.000774145126343
i:187 use minpy:0.000278949737549
acceleration:2.77521367521
float64 : (188, 188) matmul (188, 188)
i:188 use numpy:0.00285601615906
i:188 use minpy:0.000344038009644
acceleration:8.30145530146
float64 : (189, 189) matmul (189, 189)
i:189 use numpy:0.000171899795532
i:189 use minpy:0.000388860702515
acceleration:0.442060085837
float64 : (190, 190) matmul (190, 190)
i:190 use numpy:0.00661396980286
i:190 use minpy:0.000339984893799
acceleration:19.45371669
float64 : (191, 191) matmul (191, 191)
i:191 use numpy:0.00410199165344
i:191 use minpy:0.00687098503113
acceleration:0.597001977862
float64 : (192, 192) matmul (192, 192)
i:192 use numpy:0.00627994537354
i:192 use minpy:0.0106451511383
acceleration:0.589934824968
float64 : (193, 193) matmul (193, 193)
i:193 use numpy:0.00709295272827
i:193 use minpy:0.0101978778839
acceleration:0.695532228275
float64 : (194, 194) matmul (194, 194)
i:194 use numpy:0.000287055969238
i:194 use minpy:0.0145709514618
acceleration:0.0197005645095
float64 : (195, 195) matmul (195, 195)
i:195 use numpy:0.00349497795105
i:195 use minpy:0.00150084495544
acceleration:2.32867355044
float64 : (196, 196) matmul (196, 196)
i:196 use numpy:0.0172669887543
i:196 use minpy:0.000414848327637
acceleration:41.6224137931
float64 : (197, 197) matmul (197, 197)
i:197 use numpy:0.0167350769043
i:197 use minpy:0.000444889068604
acceleration:37.6162915327
float64 : (198, 198) matmul (198, 198)
i:198 use numpy:0.00625896453857
i:198 use minpy:0.000416040420532
acceleration:15.0441260745
float64 : (199, 199) matmul (199, 199)
i:199 use numpy:0.00812101364136
i:199 use minpy:0.000408887863159
acceleration:19.8612244898
float64 : (200, 200) matmul (200, 200)
i:200 use numpy:0.0160541534424
i:200 use minpy:0.000350952148438
acceleration:45.7445652174
float64 : (201, 201) matmul (201, 201)
i:201 use numpy:0.0170648097992
i:201 use minpy:0.00536894798279
acceleration:3.178427106
float64 : (202, 202) matmul (202, 202)
i:202 use numpy:0.0146198272705
i:202 use minpy:0.00602102279663
acceleration:2.4281301972
float64 : (203, 203) matmul (203, 203)
i:203 use numpy:0.000221967697144
i:203 use minpy:0.000381946563721
acceleration:0.581148564295
float64 : (204, 204) matmul (204, 204)
i:204 use numpy:0.000199794769287
i:204 use minpy:0.0162210464478
acceleration:0.0123170086425
float64 : (205, 205) matmul (205, 205)
i:205 use numpy:0.00989103317261
i:205 use minpy:0.000379085540771
acceleration:26.0918238994
float64 : (206, 206) matmul (206, 206)
i:206 use numpy:0.00646090507507
i:206 use minpy:0.000311851501465
acceleration:20.7178899083
float64 : (207, 207) matmul (207, 207)
i:207 use numpy:0.00633716583252
i:207 use minpy:0.000322103500366
acceleration:19.674315322
float64 : (208, 208) matmul (208, 208)
i:208 use numpy:0.00215005874634
i:208 use minpy:0.00039005279541
acceleration:5.51222493888
float64 : (209, 209) matmul (209, 209)
i:209 use numpy:0.01118683815
i:209 use minpy:0.000483989715576
acceleration:23.1137931034
float64 : (210, 210) matmul (210, 210)
i:210 use numpy:0.00279092788696
i:210 use minpy:0.00269389152527
acceleration:1.0360208868
float64 : (211, 211) matmul (211, 211)
i:211 use numpy:0.0121650695801
i:211 use minpy:0.000335931777954
acceleration:36.2129169624
float64 : (212, 212) matmul (212, 212)
i:212 use numpy:0.0104420185089
i:212 use minpy:0.000582218170166
acceleration:17.9348894349
float64 : (213, 213) matmul (213, 213)
i:213 use numpy:0.00375008583069
i:213 use minpy:0.00790905952454
acceleration:0.474150664697
float64 : (214, 214) matmul (214, 214)
i:214 use numpy:0.000228881835938
i:214 use minpy:0.0136840343475
acceleration:0.0167261956616
float64 : (215, 215) matmul (215, 215)
i:215 use numpy:0.000241994857788
i:215 use minpy:0.0176150798798
acceleration:0.0137379370085
float64 : (216, 216) matmul (216, 216)
i:216 use numpy:0.00751209259033
i:216 use minpy:0.00344705581665
acceleration:2.17927790842
float64 : (217, 217) matmul (217, 217)
i:217 use numpy:0.00538301467896
i:217 use minpy:0.000275850296021
acceleration:19.5142610199
float64 : (218, 218) matmul (218, 218)
i:218 use numpy:0.00361394882202
i:218 use minpy:0.000343084335327
acceleration:10.5337039611
float64 : (219, 219) matmul (219, 219)
i:219 use numpy:0.0071759223938
i:219 use minpy:0.00423288345337
acceleration:1.69527993692
float64 : (220, 220) matmul (220, 220)
i:220 use numpy:0.00684881210327
i:220 use minpy:0.0107219219208
acceleration:0.638767205532
float64 : (221, 221) matmul (221, 221)
i:221 use numpy:0.00555515289307
i:221 use minpy:0.00393486022949
acceleration:1.41177896268
float64 : (222, 222) matmul (222, 222)
i:222 use numpy:0.0129611492157
i:222 use minpy:0.00160598754883
acceleration:8.07051662708
float64 : (223, 223) matmul (223, 223)
i:223 use numpy:0.00191712379456
i:223 use minpy:0.00239205360413
acceleration:0.801455197847
float64 : (224, 224) matmul (224, 224)
i:224 use numpy:0.00550389289856
i:224 use minpy:0.000261783599854
acceleration:21.0245901639
float64 : (225, 225) matmul (225, 225)
i:225 use numpy:0.00911593437195
i:225 use minpy:0.0107641220093
acceleration:0.846881367945
float64 : (226, 226) matmul (226, 226)
i:226 use numpy:0.00560283660889
i:226 use minpy:0.00932002067566
acceleration:0.601161392648
float64 : (227, 227) matmul (227, 227)
i:227 use numpy:0.00670599937439
i:227 use minpy:0.0107700824738
acceleration:0.622650698426
float64 : (228, 228) matmul (228, 228)
i:228 use numpy:0.00513195991516
i:228 use minpy:0.00935912132263
acceleration:0.548337791364
float64 : (229, 229) matmul (229, 229)
i:229 use numpy:0.00467300415039
i:229 use minpy:0.0107538700104
acceleration:0.434541625097
float64 : (230, 230) matmul (230, 230)
i:230 use numpy:0.000263929367065
i:230 use minpy:0.000473976135254
acceleration:0.556841046278
float64 : (231, 231) matmul (231, 231)
i:231 use numpy:0.00505304336548
i:231 use minpy:0.0101490020752
acceleration:0.497885735764
float64 : (232, 232) matmul (232, 232)
i:232 use numpy:0.0055890083313
i:232 use minpy:0.00967717170715
acceleration:0.577545640444
float64 : (233, 233) matmul (233, 233)
i:233 use numpy:0.00062894821167
i:233 use minpy:0.00516819953918
acceleration:0.121695806615
float64 : (234, 234) matmul (234, 234)
i:234 use numpy:0.00394511222839
i:234 use minpy:0.000362157821655
acceleration:10.8933508887
float64 : (235, 235) matmul (235, 235)
i:235 use numpy:0.000268936157227
i:235 use minpy:0.00206398963928
acceleration:0.130299179854
float64 : (236, 236) matmul (236, 236)
i:236 use numpy:0.00025486946106
i:236 use minpy:0.000715970993042
acceleration:0.355977355977
float64 : (237, 237) matmul (237, 237)
i:237 use numpy:0.000291109085083
i:237 use minpy:0.00287795066833
acceleration:0.101151520172
float64 : (238, 238) matmul (238, 238)
i:238 use numpy:0.00409293174744
i:238 use minpy:0.000856161117554
acceleration:4.7805625174
float64 : (239, 239) matmul (239, 239)
i:239 use numpy:0.00768995285034
i:239 use minpy:0.00981378555298
acceleration:0.783586803362
float64 : (240, 240) matmul (240, 240)
i:240 use numpy:0.00597596168518
i:240 use minpy:0.000335931777954
acceleration:17.7892122072
float64 : (241, 241) matmul (241, 241)
i:241 use numpy:0.00703692436218
i:241 use minpy:0.0119168758392
acceleration:0.590500770262
float64 : (242, 242) matmul (242, 242)
i:242 use numpy:0.00382590293884
i:242 use minpy:0.0106201171875
acceleration:0.360250538793
float64 : (243, 243) matmul (243, 243)
i:243 use numpy:0.00884604454041
i:243 use minpy:0.00471305847168
acceleration:1.87692229866
float64 : (244, 244) matmul (244, 244)
i:244 use numpy:0.00663685798645
i:244 use minpy:0.000608921051025
acceleration:10.8993735317
float64 : (245, 245) matmul (245, 245)
i:245 use numpy:0.000317096710205
i:245 use minpy:0.0153579711914
acceleration:0.0206470442126
float64 : (246, 246) matmul (246, 246)
i:246 use numpy:0.000334024429321
i:246 use minpy:0.00448393821716
acceleration:0.0744935396395
float64 : (247, 247) matmul (247, 247)
i:247 use numpy:0.000297069549561
i:247 use minpy:0.0188050270081
acceleration:0.0157973476684
float64 : (248, 248) matmul (248, 248)
i:248 use numpy:0.000347137451172
i:248 use minpy:0.00582981109619
acceleration:0.0595452314739
float64 : (249, 249) matmul (249, 249)
i:249 use numpy:0.000346899032593
i:249 use minpy:0.0185911655426
acceleration:0.0186593482694
float64 : (250, 250) matmul (250, 250)
i:250 use numpy:0.000370979309082
i:250 use minpy:0.0168368816376
acceleration:0.0220337302992
float64 : (251, 251) matmul (251, 251)
i:251 use numpy:0.000387907028198
i:251 use minpy:0.0146400928497
acceleration:0.0264962136634
float64 : (252, 252) matmul (252, 252)
i:252 use numpy:0.000375986099243
i:252 use minpy:0.013564825058
acceleration:0.0277177256349
float64 : (253, 253) matmul (253, 253)
i:253 use numpy:0.000513076782227
i:253 use minpy:0.0058159828186
acceleration:0.0882184143642
float64 : (254, 254) matmul (254, 254)
i:254 use numpy:0.00191593170166
i:254 use minpy:0.00356507301331
acceleration:0.537417240687
float64 : (255, 255) matmul (255, 255)
i:255 use numpy:0.00241088867188
i:255 use minpy:0.012757062912
acceleration:0.188984618835
float64 : (256, 256) matmul (256, 256)
i:256 use numpy:0.000398874282837
i:256 use minpy:0.0188620090485
acceleration:0.0211469669966
float64 : (257, 257) matmul (257, 257)
i:257 use numpy:0.000402212142944
i:257 use minpy:0.00471091270447
acceleration:0.0853788147173
float64 : (258, 258) matmul (258, 258)
i:258 use numpy:0.000401020050049
i:258 use minpy:0.0198528766632
acceleration:0.0201995940866
float64 : (259, 259) matmul (259, 259)
i:259 use numpy:0.000478982925415
i:259 use minpy:0.00148797035217
acceleration:0.321903541099
float64 : (260, 260) matmul (260, 260)
i:260 use numpy:0.000560998916626
i:260 use minpy:0.0164711475372
acceleration:0.0340594919302
float64 : (261, 261) matmul (261, 261)
i:261 use numpy:0.000715970993042
i:261 use minpy:0.0212118625641
acceleration:0.0337533298115
float64 : (262, 262) matmul (262, 262)
i:262 use numpy:0.00962615013123
i:262 use minpy:0.00138711929321
acceleration:6.93966998969
float64 : (263, 263) matmul (263, 263)
i:263 use numpy:0.0147480964661
i:263 use minpy:0.0015709400177
acceleration:9.38807102747
float64 : (264, 264) matmul (264, 264)
i:264 use numpy:0.00226402282715
i:264 use minpy:0.00055718421936
acceleration:4.06332905434
float64 : (265, 265) matmul (265, 265)
i:265 use numpy:0.00904393196106
i:265 use minpy:0.000699043273926
acceleration:12.937585266
float64 : (266, 266) matmul (266, 266)
i:266 use numpy:0.0138750076294
i:266 use minpy:0.000691175460815
acceleration:20.0745084512
float64 : (267, 267) matmul (267, 267)
i:267 use numpy:0.01393699646
i:267 use minpy:0.000745058059692
acceleration:18.70592
float64 : (268, 268) matmul (268, 268)
i:268 use numpy:0.0060088634491
i:268 use minpy:0.000859975814819
acceleration:6.98724701968
float64 : (269, 269) matmul (269, 269)
i:269 use numpy:0.00603199005127
i:269 use minpy:0.000767946243286
acceleration:7.85470350823
float64 : (270, 270) matmul (270, 270)
i:270 use numpy:0.00601005554199
i:270 use minpy:0.000629901885986
acceleration:9.54125662377
float64 : (271, 271) matmul (271, 271)
i:271 use numpy:0.00601720809937
i:271 use minpy:0.000610828399658
acceleration:9.85089773614
float64 : (272, 272) matmul (272, 272)
i:272 use numpy:0.000458002090454
i:272 use minpy:0.000413179397583
acceleration:1.10848240046
float64 : (273, 273) matmul (273, 273)
i:273 use numpy:0.00043511390686
i:273 use minpy:0.000326871871948
acceleration:1.33114514953
float64 : (274, 274) matmul (274, 274)
i:274 use numpy:0.00232291221619
i:274 use minpy:0.00357294082642
acceleration:0.650140130789
float64 : (275, 275) matmul (275, 275)
i:275 use numpy:0.0055251121521
i:275 use minpy:0.00682997703552
acceleration:0.808950326387
float64 : (276, 276) matmul (276, 276)
i:276 use numpy:0.000463008880615
i:276 use minpy:0.000469923019409
acceleration:0.98528665652
float64 : (277, 277) matmul (277, 277)
i:277 use numpy:0.00676918029785
i:277 use minpy:0.00481104850769
acceleration:1.4070072848
float64 : (278, 278) matmul (278, 278)
i:278 use numpy:0.00526809692383
i:278 use minpy:0.0101959705353
acceleration:0.516684204373
float64 : (279, 279) matmul (279, 279)
i:279 use numpy:0.00361609458923
i:279 use minpy:0.00905799865723
acceleration:0.399215624342
float64 : (280, 280) matmul (280, 280)
i:280 use numpy:0.00210404396057
i:280 use minpy:0.000389099121094
acceleration:5.4074754902
float64 : (281, 281) matmul (281, 281)
i:281 use numpy:0.00043511390686
i:281 use minpy:0.000370979309082
acceleration:1.17287917738
float64 : (282, 282) matmul (282, 282)
i:282 use numpy:0.00554895401001
i:282 use minpy:0.00976300239563
acceleration:0.568365527852
float64 : (283, 283) matmul (283, 283)
i:283 use numpy:0.000458002090454
i:283 use minpy:0.00416588783264
acceleration:0.109941051909
float64 : (284, 284) matmul (284, 284)
i:284 use numpy:0.00543904304504
i:284 use minpy:0.00687193870544
acceleration:0.791485966069
float64 : (285, 285) matmul (285, 285)
i:285 use numpy:0.0013120174408
i:285 use minpy:0.00508499145508
acceleration:0.258017629407
float64 : (286, 286) matmul (286, 286)
i:286 use numpy:0.00599122047424
i:286 use minpy:0.00590205192566
acceleration:1.01510805898
float64 : (287, 287) matmul (287, 287)
i:287 use numpy:0.00805711746216
i:287 use minpy:0.00137805938721
acceleration:5.84671280277
float64 : (288, 288) matmul (288, 288)
i:288 use numpy:0.0048520565033
i:288 use minpy:0.010833978653
acceleration:0.447855460927
float64 : (289, 289) matmul (289, 289)
i:289 use numpy:0.0112149715424
i:289 use minpy:0.00867080688477
acceleration:1.29341728993
float64 : (290, 290) matmul (290, 290)
i:290 use numpy:0.000427007675171
i:290 use minpy:0.00617408752441
acceleration:0.0691612604263
float64 : (291, 291) matmul (291, 291)
i:291 use numpy:0.0130829811096
i:291 use minpy:0.000488996505737
acceleration:26.7547537786
float64 : (292, 292) matmul (292, 292)
i:292 use numpy:0.000574111938477
i:292 use minpy:0.00687193870544
acceleration:0.0835443916317
float64 : (293, 293) matmul (293, 293)
i:293 use numpy:0.00859308242798
i:293 use minpy:0.000485897064209
acceleration:17.6849852797
float64 : (294, 294) matmul (294, 294)
i:294 use numpy:0.00506401062012
i:294 use minpy:0.000391006469727
acceleration:12.9512195122
float64 : (295, 295) matmul (295, 295)
i:295 use numpy:0.0117361545563
i:295 use minpy:0.00145316123962
acceleration:8.07629204266
float64 : (296, 296) matmul (296, 296)
i:296 use numpy:0.00532793998718
i:296 use minpy:0.0058798789978
acceleration:0.906130889628
float64 : (297, 297) matmul (297, 297)
i:297 use numpy:0.00130200386047
i:297 use minpy:0.000455856323242
acceleration:2.85617154812
float64 : (298, 298) matmul (298, 298)
i:298 use numpy:0.00127601623535
i:298 use minpy:0.000382900238037
acceleration:3.33250311333
float64 : (299, 299) matmul (299, 299)
i:299 use numpy:0.0164380073547
i:299 use minpy:0.000473976135254
acceleration:34.6810865191
float64 : (300, 300) matmul (300, 300)
i:300 use numpy:0.00590801239014
i:300 use minpy:0.000652074813843
acceleration:9.06032906764
float64 : (301, 301) matmul (301, 301)
i:301 use numpy:0.000520944595337
i:301 use minpy:0.000468015670776
acceleration:1.11309220581
float64 : (302, 302) matmul (302, 302)
i:302 use numpy:0.0108151435852
i:302 use minpy:0.0011739730835
acceleration:9.21242891958
float64 : (303, 303) matmul (303, 303)
i:303 use numpy:0.0116519927979
i:303 use minpy:0.000476121902466
acceleration:24.4727090636
float64 : (304, 304) matmul (304, 304)
i:304 use numpy:0.0125980377197
i:304 use minpy:0.000532865524292
acceleration:23.6420581655
float64 : (305, 305) matmul (305, 305)
i:305 use numpy:0.0112950801849
i:305 use minpy:0.0019519329071
acceleration:5.78661292293
float64 : (306, 306) matmul (306, 306)
i:306 use numpy:0.000542879104614
i:306 use minpy:0.00654792785645
acceleration:0.0829085348092
float64 : (307, 307) matmul (307, 307)
i:307 use numpy:0.00308799743652
i:307 use minpy:0.000425100326538
acceleration:7.26416152552
float64 : (308, 308) matmul (308, 308)
i:308 use numpy:0.000556945800781
i:308 use minpy:0.000471830368042
acceleration:1.18039413845
float64 : (309, 309) matmul (309, 309)
i:309 use numpy:0.00448393821716
i:309 use minpy:0.000409841537476
acceleration:10.9406631763
float64 : (310, 310) matmul (310, 310)
i:310 use numpy:0.000741958618164
i:310 use minpy:0.00681114196777
acceleration:0.108933071969
float64 : (311, 311) matmul (311, 311)
i:311 use numpy:0.000537157058716
i:311 use minpy:0.000387907028198
acceleration:1.38475722188
float64 : (312, 312) matmul (312, 312)
i:312 use numpy:0.0099048614502
i:312 use minpy:0.000480890274048
acceleration:20.5969261279
float64 : (313, 313) matmul (313, 313)
i:313 use numpy:0.00748109817505
i:313 use minpy:0.00521802902222
acceleration:1.4337019099
float64 : (314, 314) matmul (314, 314)
i:314 use numpy:0.00590991973877
i:314 use minpy:0.000473976135254
acceleration:12.4688128773
float64 : (315, 315) matmul (315, 315)
i:315 use numpy:0.000630855560303
i:315 use minpy:0.000792026519775
acceleration:0.796508127634
float64 : (316, 316) matmul (316, 316)
i:316 use numpy:0.0120799541473
i:316 use minpy:0.0170230865479
acceleration:0.709621848739
float64 : (317, 317) matmul (317, 317)
i:317 use numpy:0.00631999969482
i:317 use minpy:0.000730991363525
acceleration:8.6457925636
float64 : (318, 318) matmul (318, 318)
i:318 use numpy:0.000640869140625
i:318 use minpy:0.0118050575256
acceleration:0.0542876762128
float64 : (319, 319) matmul (319, 319)
i:319 use numpy:0.00272297859192
i:319 use minpy:0.00796508789062
acceleration:0.341864224138
float64 : (320, 320) matmul (320, 320)
i:320 use numpy:0.00146698951721
i:320 use minpy:0.0126090049744
acceleration:0.116344590251
float64 : (321, 321) matmul (321, 321)
i:321 use numpy:0.000898838043213
i:321 use minpy:0.0130970478058
acceleration:0.0686290572152
float64 : (322, 322) matmul (322, 322)
i:322 use numpy:0.000875949859619
i:322 use minpy:0.000439167022705
acceleration:1.99457111835
float64 : (323, 323) matmul (323, 323)
i:323 use numpy:0.000910997390747
i:323 use minpy:0.011039018631
acceleration:0.0825252154381
float64 : (324, 324) matmul (324, 324)
i:324 use numpy:0.00318908691406
i:324 use minpy:0.000599145889282
acceleration:5.3227218464
float64 : (325, 325) matmul (325, 325)
i:325 use numpy:0.00798296928406
i:325 use minpy:0.0116310119629
acceleration:0.68635208265
float64 : (326, 326) matmul (326, 326)
i:326 use numpy:0.00408601760864
i:326 use minpy:0.0088210105896
acceleration:0.463214227796
float64 : (327, 327) matmul (327, 327)
i:327 use numpy:0.00256299972534
i:327 use minpy:0.000796794891357
acceleration:3.21663674446
float64 : (328, 328) matmul (328, 328)
i:328 use numpy:0.000922918319702
i:328 use minpy:0.0124638080597
acceleration:0.0740478604358
float64 : (329, 329) matmul (329, 329)
i:329 use numpy:0.0121171474457
i:329 use minpy:0.00049901008606
acceleration:24.2823698041
float64 : (330, 330) matmul (330, 330)
i:330 use numpy:0.0109879970551
i:330 use minpy:0.000524044036865
acceleration:20.9676979072
float64 : (331, 331) matmul (331, 331)
i:331 use numpy:0.00659799575806
i:331 use minpy:0.000519037246704
acceleration:12.7119889757
float64 : (332, 332) matmul (332, 332)
i:332 use numpy:0.00741791725159
i:332 use minpy:0.000520944595337
acceleration:14.2393592677
float64 : (333, 333) matmul (333, 333)
i:333 use numpy:0.0108850002289
i:333 use minpy:0.000481128692627
acceleration:22.6238850347
float64 : (334, 334) matmul (334, 334)
i:334 use numpy:0.0107758045197
i:334 use minpy:0.0100610256195
acceleration:1.07104433754
float64 : (335, 335) matmul (335, 335)
i:335 use numpy:0.0109858512878
i:335 use minpy:0.012090921402
acceleration:0.908603316704
float64 : (336, 336) matmul (336, 336)
i:336 use numpy:0.00230598449707
i:336 use minpy:0.00712895393372
acceleration:0.32346744256
float64 : (337, 337) matmul (337, 337)
i:337 use numpy:0.00154089927673
i:337 use minpy:0.00980305671692
acceleration:0.157185592334
float64 : (338, 338) matmul (338, 338)
i:338 use numpy:0.00370192527771
i:338 use minpy:0.00737118721008
acceleration:0.502215609535
float64 : (339, 339) matmul (339, 339)
i:339 use numpy:0.010715007782
i:339 use minpy:0.0124521255493
acceleration:0.860496285517
float64 : (340, 340) matmul (340, 340)
i:340 use numpy:0.00100111961365
i:340 use minpy:0.00288105010986
acceleration:0.34748427673
float64 : (341, 341) matmul (341, 341)
i:341 use numpy:0.00159096717834
i:341 use minpy:0.012512922287
acceleration:0.127145932969
float64 : (342, 342) matmul (342, 342)
i:342 use numpy:0.01034116745
i:342 use minpy:0.00976204872131
acceleration:1.05932348272
float64 : (343, 343) matmul (343, 343)
i:343 use numpy:0.00100898742676
i:343 use minpy:0.00435614585876
acceleration:0.231623884845
float64 : (344, 344) matmul (344, 344)
i:344 use numpy:0.00443720817566
i:344 use minpy:0.00680899620056
acceleration:0.651668475787
float64 : (345, 345) matmul (345, 345)
i:345 use numpy:0.00311589241028
i:345 use minpy:0.0080189704895
acceleration:0.388565142415
float64 : (346, 346) matmul (346, 346)
i:346 use numpy:0.00699591636658
i:346 use minpy:0.0110421180725
acceleration:0.633566524161
float64 : (347, 347) matmul (347, 347)
i:347 use numpy:0.00113201141357
i:347 use minpy:0.00515294075012
acceleration:0.219682598436
float64 : (348, 348) matmul (348, 348)
i:348 use numpy:0.00271987915039
i:348 use minpy:0.00551104545593
acceleration:0.493532338308
float64 : (349, 349) matmul (349, 349)
i:349 use numpy:0.00112199783325
i:349 use minpy:0.00500702857971
acceleration:0.224084567402
float64 : (350, 350) matmul (350, 350)
i:350 use numpy:0.00249409675598
i:350 use minpy:0.0100479125977
acceleration:0.248220387244
float64 : (351, 351) matmul (351, 351)
i:351 use numpy:0.00358295440674
i:351 use minpy:0.00126194953918
acceleration:2.83922161345
float64 : (352, 352) matmul (352, 352)
i:352 use numpy:0.00208497047424
i:352 use minpy:0.0076150894165
acceleration:0.273794614903
float64 : (353, 353) matmul (353, 353)
i:353 use numpy:0.0040271282196
i:353 use minpy:0.000706911087036
acceleration:5.69679595278
float64 : (354, 354) matmul (354, 354)
i:354 use numpy:0.0170691013336
i:354 use minpy:0.000601053237915
acceleration:28.3986513288
float64 : (355, 355) matmul (355, 355)
i:355 use numpy:0.0108201503754
i:355 use minpy:0.000537157058716
acceleration:20.143364403
float64 : (356, 356) matmul (356, 356)
i:356 use numpy:0.00328803062439
i:356 use minpy:0.0029571056366
acceleration:1.11190840926
float64 : (357, 357) matmul (357, 357)
i:357 use numpy:0.00120496749878
i:357 use minpy:0.0047299861908
acceleration:0.254750743485
float64 : (358, 358) matmul (358, 358)
i:358 use numpy:0.00194120407104
i:358 use minpy:0.0105760097504
acceleration:0.183547870782
float64 : (359, 359) matmul (359, 359)
i:359 use numpy:0.00124502182007
i:359 use minpy:0.00342702865601
acceleration:0.363294837902
float64 : (360, 360) matmul (360, 360)
i:360 use numpy:0.00723791122437
i:360 use minpy:0.000731945037842
acceleration:9.88859934853
float64 : (361, 361) matmul (361, 361)
i:361 use numpy:0.00799918174744
i:361 use minpy:0.000590085983276
acceleration:13.555959596
float64 : (362, 362) matmul (362, 362)
i:362 use numpy:0.004714012146
i:362 use minpy:0.0160799026489
acceleration:0.293161734179
float64 : (363, 363) matmul (363, 363)
i:363 use numpy:0.00489711761475
i:363 use minpy:0.00965690612793
acceleration:0.507110408849
float64 : (364, 364) matmul (364, 364)
i:364 use numpy:0.00219821929932
i:364 use minpy:0.0118799209595
acceleration:0.185036525648
float64 : (365, 365) matmul (365, 365)
i:365 use numpy:0.00290107727051
i:365 use minpy:0.000931024551392
acceleration:3.11600512164
float64 : (366, 366) matmul (366, 366)
i:366 use numpy:0.00255703926086
i:366 use minpy:0.000744104385376
acceleration:3.4363985902
float64 : (367, 367) matmul (367, 367)
i:367 use numpy:0.00101494789124
i:367 use minpy:0.0099630355835
acceleration:0.101871350627
float64 : (368, 368) matmul (368, 368)
i:368 use numpy:0.00229501724243
i:368 use minpy:0.000708103179932
acceleration:3.24107744108
float64 : (369, 369) matmul (369, 369)
i:369 use numpy:0.00469207763672
i:369 use minpy:0.000845909118652
acceleration:5.54678692221
float64 : (370, 370) matmul (370, 370)
i:370 use numpy:0.00388193130493
i:370 use minpy:0.000553846359253
acceleration:7.00904003444
float64 : (371, 371) matmul (371, 371)
i:371 use numpy:0.00430798530579
i:371 use minpy:0.000748872756958
acceleration:5.75262655205
float64 : (372, 372) matmul (372, 372)
i:372 use numpy:0.00203084945679
i:372 use minpy:0.00758194923401
acceleration:0.267853212163
float64 : (373, 373) matmul (373, 373)
i:373 use numpy:0.0121719837189
i:373 use minpy:0.000786066055298
acceleration:15.4846830452
float64 : (374, 374) matmul (374, 374)
i:374 use numpy:0.00135588645935
i:374 use minpy:0.00162291526794
acceleration:0.835463493463
float64 : (375, 375) matmul (375, 375)
i:375 use numpy:0.00137519836426
i:375 use minpy:0.00570297241211
acceleration:0.241137123746
float64 : (376, 376) matmul (376, 376)
i:376 use numpy:0.0013530254364
i:376 use minpy:0.000766038894653
acceleration:1.76626206038
float64 : (377, 377) matmul (377, 377)
i:377 use numpy:0.00123691558838
i:377 use minpy:0.000921010971069
acceleration:1.3429976702
float64 : (378, 378) matmul (378, 378)
i:378 use numpy:0.00376486778259
i:378 use minpy:0.000531911849976
acceleration:7.07799193187
float64 : (379, 379) matmul (379, 379)
i:379 use numpy:0.00345087051392
i:379 use minpy:0.000790119171143
acceleration:4.36753168377
float64 : (380, 380) matmul (380, 380)
i:380 use numpy:0.00702500343323
i:380 use minpy:0.001953125
acceleration:3.59680175781
float64 : (381, 381) matmul (381, 381)
i:381 use numpy:0.00545501708984
i:381 use minpy:0.0140149593353
acceleration:0.389228178215
float64 : (382, 382) matmul (382, 382)
i:382 use numpy:0.00119400024414
i:382 use minpy:0.00154495239258
acceleration:0.772839506173
float64 : (383, 383) matmul (383, 383)
i:383 use numpy:0.0012001991272
i:383 use minpy:0.0171871185303
acceleration:0.0698313172789
float64 : (384, 384) matmul (384, 384)
i:384 use numpy:0.000850915908813
i:384 use minpy:0.009770154953
acceleration:0.087093389297
float64 : (385, 385) matmul (385, 385)
i:385 use numpy:0.00177717208862
i:385 use minpy:0.00119495391846
acceleration:1.48723064645
float64 : (386, 386) matmul (386, 386)
i:386 use numpy:0.00109100341797
i:386 use minpy:0.000762939453125
acceleration:1.43
float64 : (387, 387) matmul (387, 387)
i:387 use numpy:0.00112104415894
i:387 use minpy:0.000860929489136
acceleration:1.3021323733
float64 : (388, 388) matmul (388, 388)
i:388 use numpy:0.00113606452942
i:388 use minpy:0.00442910194397
acceleration:0.256499973085
float64 : (389, 389) matmul (389, 389)
i:389 use numpy:0.0012059211731
i:389 use minpy:0.000975847244263
acceleration:1.23576838505
float64 : (390, 390) matmul (390, 390)
i:390 use numpy:0.00119400024414
i:390 use minpy:0.0139629840851
acceleration:0.0855118244685
float64 : (391, 391) matmul (391, 391)
i:391 use numpy:0.00119996070862
i:391 use minpy:0.0129210948944
acceleration:0.0928683457884
float64 : (392, 392) matmul (392, 392)
i:392 use numpy:0.00129914283752
i:392 use minpy:0.000642061233521
acceleration:2.0233939844
float64 : (393, 393) matmul (393, 393)
i:393 use numpy:0.00483918190002
i:393 use minpy:0.00578808784485
acceleration:0.836058821106
float64 : (394, 394) matmul (394, 394)
i:394 use numpy:0.000969886779785
i:394 use minpy:0.00283098220825
acceleration:0.342597271349
float64 : (395, 395) matmul (395, 395)
i:395 use numpy:0.00129508972168
i:395 use minpy:0.0124111175537
acceleration:0.10434916244
float64 : (396, 396) matmul (396, 396)
i:396 use numpy:0.00143003463745
i:396 use minpy:0.00170612335205
acceleration:0.838177752935
float64 : (397, 397) matmul (397, 397)
i:397 use numpy:0.00136709213257
i:397 use minpy:0.000774145126343
acceleration:1.76593778873
float64 : (398, 398) matmul (398, 398)
i:398 use numpy:0.00143003463745
i:398 use minpy:0.00502419471741
acceleration:0.284629620842
float64 : (399, 399) matmul (399, 399)
i:399 use numpy:0.0013439655304
i:399 use minpy:0.00300598144531
acceleration:0.447097081218
float64 : (400, 400) matmul (400, 400)
i:400 use numpy:0.00138282775879
i:400 use minpy:0.000870943069458
acceleration:1.58773610731
float64 : (401, 401) matmul (401, 401)
i:401 use numpy:0.0234389305115
i:401 use minpy:0.000855922698975
acceleration:27.3844011142
float64 : (402, 402) matmul (402, 402)
i:402 use numpy:0.00453209877014
i:402 use minpy:0.000560998916626
acceleration:8.07862303442
float64 : (403, 403) matmul (403, 403)
i:403 use numpy:0.0123970508575
i:403 use minpy:0.000633001327515
acceleration:19.5845574388
float64 : (404, 404) matmul (404, 404)
i:404 use numpy:0.00105500221252
i:404 use minpy:0.00980591773987
acceleration:0.107588319677
float64 : (405, 405) matmul (405, 405)
i:405 use numpy:0.00134205818176
i:405 use minpy:0.00276899337769
acceleration:0.484673669709
float64 : (406, 406) matmul (406, 406)
i:406 use numpy:0.00137400627136
i:406 use minpy:0.000706911087036
acceleration:1.9436762226
float64 : (407, 407) matmul (407, 407)
i:407 use numpy:0.00169014930725
i:407 use minpy:0.0175180435181
acceleration:0.0964804834232
float64 : (408, 408) matmul (408, 408)
i:408 use numpy:0.00104117393494
i:408 use minpy:0.0117871761322
acceleration:0.0883310746577
float64 : (409, 409) matmul (409, 409)
i:409 use numpy:0.00146508216858
i:409 use minpy:0.0124478340149
acceleration:0.11769775905
float64 : (410, 410) matmul (410, 410)
i:410 use numpy:0.00147414207458
i:410 use minpy:0.00104308128357
acceleration:1.41325714286
float64 : (411, 411) matmul (411, 411)
i:411 use numpy:0.00108003616333
i:411 use minpy:0.000876188278198
acceleration:1.23265306122
float64 : (412, 412) matmul (412, 412)
i:412 use numpy:0.00113415718079
i:412 use minpy:0.000515937805176
acceleration:2.19824399261
float64 : (413, 413) matmul (413, 413)
i:413 use numpy:0.0123589038849
i:413 use minpy:0.000653028488159
acceleration:18.9255202629
float64 : (414, 414) matmul (414, 414)
i:414 use numpy:0.00417184829712
i:414 use minpy:0.00127696990967
acceleration:3.26699029126
float64 : (415, 415) matmul (415, 415)
i:415 use numpy:0.0173511505127
i:415 use minpy:0.000929117202759
acceleration:18.6748781114
float64 : (416, 416) matmul (416, 416)
i:416 use numpy:0.00317001342773
i:416 use minpy:0.00915503501892
acceleration:0.346259017162
float64 : (417, 417) matmul (417, 417)
i:417 use numpy:0.00456190109253
i:417 use minpy:0.0186219215393
acceleration:0.244974777866
float64 : (418, 418) matmul (418, 418)
i:418 use numpy:0.0103120803833
i:418 use minpy:0.0125918388367
acceleration:0.81894952096
float64 : (419, 419) matmul (419, 419)
i:419 use numpy:0.00160503387451
i:419 use minpy:0.007648229599
acceleration:0.209856915739
float64 : (420, 420) matmul (420, 420)
i:420 use numpy:0.00279688835144
i:420 use minpy:0.021931886673
acceleration:0.127526117253
float64 : (421, 421) matmul (421, 421)
i:421 use numpy:0.00796413421631
i:421 use minpy:0.000822067260742
acceleration:9.6879350348
float64 : (422, 422) matmul (422, 422)
i:422 use numpy:0.00932097434998
i:422 use minpy:0.000648021697998
acceleration:14.3837380427
float64 : (423, 423) matmul (423, 423)
i:423 use numpy:0.00453996658325
i:423 use minpy:0.00406384468079
acceleration:1.11716045761
float64 : (424, 424) matmul (424, 424)
i:424 use numpy:0.0023090839386
i:424 use minpy:0.00733017921448
acceleration:0.315010570825
float64 : (425, 425) matmul (425, 425)
i:425 use numpy:0.00162410736084
i:425 use minpy:0.0124309062958
acceleration:0.130650760467
float64 : (426, 426) matmul (426, 426)
i:426 use numpy:0.00480318069458
i:426 use minpy:0.00216817855835
acceleration:2.21530679569
float64 : (427, 427) matmul (427, 427)
i:427 use numpy:0.0106468200684
i:427 use minpy:0.00125694274902
acceleration:8.47040971168
float64 : (428, 428) matmul (428, 428)
i:428 use numpy:0.0102751255035
i:428 use minpy:0.00145816802979
acceleration:7.04659908437
float64 : (429, 429) matmul (429, 429)
i:429 use numpy:0.00752902030945
i:429 use minpy:0.00212907791138
acceleration:3.53628219485
float64 : (430, 430) matmul (430, 430)
i:430 use numpy:0.00905394554138
i:430 use minpy:0.000656843185425
acceleration:13.7840290381
float64 : (431, 431) matmul (431, 431)
i:431 use numpy:0.0102469921112
i:431 use minpy:0.00112891197205
acceleration:9.07687434002
float64 : (432, 432) matmul (432, 432)
i:432 use numpy:0.00508189201355
i:432 use minpy:0.00108003616333
acceleration:4.70529801325
float64 : (433, 433) matmul (433, 433)
i:433 use numpy:0.00435900688171
i:433 use minpy:0.00962209701538
acceleration:0.453020466822
float64 : (434, 434) matmul (434, 434)
i:434 use numpy:0.00737690925598
i:434 use minpy:0.00187206268311
acceleration:3.94052470708
float64 : (435, 435) matmul (435, 435)
i:435 use numpy:0.00605010986328
i:435 use minpy:0.0107119083405
acceleration:0.56480224354
float64 : (436, 436) matmul (436, 436)
i:436 use numpy:0.00202488899231
i:436 use minpy:0.00457501411438
acceleration:0.442597321382
float64 : (437, 437) matmul (437, 437)
i:437 use numpy:0.0109198093414
i:437 use minpy:0.0229020118713
acceleration:0.476805679902
float64 : (438, 438) matmul (438, 438)
i:438 use numpy:0.00475907325745
i:438 use minpy:0.00325179100037
acceleration:1.46352371875
float64 : (439, 439) matmul (439, 439)
i:439 use numpy:0.00283193588257
i:439 use minpy:0.000800848007202
acceleration:3.53617147961
float64 : (440, 440) matmul (440, 440)
i:440 use numpy:0.00181818008423
i:440 use minpy:0.00598907470703
acceleration:0.303582802548
float64 : (441, 441) matmul (441, 441)
i:441 use numpy:0.00173282623291
i:441 use minpy:0.000830888748169
acceleration:2.08550932568
float64 : (442, 442) matmul (442, 442)
i:442 use numpy:0.00185704231262
i:442 use minpy:0.00196695327759
acceleration:0.944121212121
float64 : (443, 443) matmul (443, 443)
i:443 use numpy:0.00294709205627
i:443 use minpy:0.00111103057861
acceleration:2.6525751073
float64 : (444, 444) matmul (444, 444)
i:444 use numpy:0.00184082984924
i:444 use minpy:0.0126531124115
acceleration:0.145484351152
float64 : (445, 445) matmul (445, 445)
i:445 use numpy:0.00143194198608
i:445 use minpy:0.0128190517426
acceleration:0.111704205182
float64 : (446, 446) matmul (446, 446)
i:446 use numpy:0.00205898284912
i:446 use minpy:0.0134718418121
acceleration:0.15283603221
float64 : (447, 447) matmul (447, 447)
i:447 use numpy:0.0018298625946
i:447 use minpy:0.000816822052002
acceleration:2.24022183304
float64 : (448, 448) matmul (448, 448)
i:448 use numpy:0.00493788719177
i:448 use minpy:0.00318908691406
acceleration:1.54837021531
float64 : (449, 449) matmul (449, 449)
i:449 use numpy:0.0194189548492
i:449 use minpy:0.0164861679077
acceleration:1.17789379302
float64 : (450, 450) matmul (450, 450)
i:450 use numpy:0.0019359588623
i:450 use minpy:0.00100302696228
acceleration:1.93011647255
float64 : (451, 451) matmul (451, 451)
i:451 use numpy:0.00243806838989
i:451 use minpy:0.00656700134277
acceleration:0.371260528609
float64 : (452, 452) matmul (452, 452)
i:452 use numpy:0.00150322914124
i:452 use minpy:0.000663042068481
acceleration:2.2671700827
float64 : (453, 453) matmul (453, 453)
i:453 use numpy:0.00672507286072
i:453 use minpy:0.00415706634521
acceleration:1.61774489562
float64 : (454, 454) matmul (454, 454)
i:454 use numpy:0.0107271671295
i:454 use minpy:0.000679016113281
acceleration:15.7981039326
float64 : (455, 455) matmul (455, 455)
i:455 use numpy:0.00153708457947
i:455 use minpy:0.000660181045532
acceleration:2.32827735645
float64 : (456, 456) matmul (456, 456)
i:456 use numpy:0.00308203697205
i:456 use minpy:0.0010941028595
acceleration:2.81695358466
float64 : (457, 457) matmul (457, 457)
i:457 use numpy:0.00203895568848
i:457 use minpy:0.000883102416992
acceleration:2.30885529158
float64 : (458, 458) matmul (458, 458)
i:458 use numpy:0.00770211219788
i:458 use minpy:0.000667095184326
acceleration:11.5457469621
float64 : (459, 459) matmul (459, 459)
i:459 use numpy:0.00536417961121
i:459 use minpy:0.00226497650146
acceleration:2.36831578947
float64 : (460, 460) matmul (460, 460)
i:460 use numpy:0.0027379989624
i:460 use minpy:0.00125694274902
acceleration:2.17830045524
float64 : (461, 461) matmul (461, 461)
i:461 use numpy:0.0108761787415
i:461 use minpy:0.0123980045319
acceleration:0.877252360532
float64 : (462, 462) matmul (462, 462)
i:462 use numpy:0.00202202796936
i:462 use minpy:0.0113489627838
acceleration:0.178168525871
float64 : (463, 463) matmul (463, 463)
i:463 use numpy:0.00214385986328
i:463 use minpy:0.0104360580444
acceleration:0.20542812757
float64 : (464, 464) matmul (464, 464)
i:464 use numpy:0.0021071434021
i:464 use minpy:0.0138549804688
acceleration:0.152085627753
float64 : (465, 465) matmul (465, 465)
i:465 use numpy:0.00213599205017
i:465 use minpy:0.0121760368347
acceleration:0.175425886039
float64 : (466, 466) matmul (466, 466)
i:466 use numpy:0.00212287902832
i:466 use minpy:0.00731086730957
acceleration:0.29037307592
float64 : (467, 467) matmul (467, 467)
i:467 use numpy:0.00216889381409
i:467 use minpy:0.0102109909058
acceleration:0.212407770617
float64 : (468, 468) matmul (468, 468)
i:468 use numpy:0.00217008590698
i:468 use minpy:0.0263981819153
acceleration:0.0822058850093
float64 : (469, 469) matmul (469, 469)
i:469 use numpy:0.00220489501953
i:469 use minpy:0.00884199142456
acceleration:0.249366337702
float64 : (470, 470) matmul (470, 470)
i:470 use numpy:0.00220108032227
i:470 use minpy:0.00967407226562
acceleration:0.227523659306
float64 : (471, 471) matmul (471, 471)
i:471 use numpy:0.00221705436707
i:471 use minpy:0.0137491226196
acceleration:0.161250606922
float64 : (472, 472) matmul (472, 472)
i:472 use numpy:0.00165319442749
i:472 use minpy:0.00339818000793
acceleration:0.486494071424
float64 : (473, 473) matmul (473, 473)
i:473 use numpy:0.00599408149719
i:473 use minpy:0.00695705413818
acceleration:0.861583276217
float64 : (474, 474) matmul (474, 474)
i:474 use numpy:0.00216913223267
i:474 use minpy:0.00314211845398
acceleration:0.690340693528
float64 : (475, 475) matmul (475, 475)
i:475 use numpy:0.00734114646912
i:475 use minpy:0.00260710716248
acceleration:2.81582075903
float64 : (476, 476) matmul (476, 476)
i:476 use numpy:0.00210189819336
i:476 use minpy:0.0130000114441
acceleration:0.161684334079
float64 : (477, 477) matmul (477, 477)
i:477 use numpy:0.00478601455688
i:477 use minpy:0.00174307823181
acceleration:2.74572561893
float64 : (478, 478) matmul (478, 478)
i:478 use numpy:0.0126581192017
i:478 use minpy:0.00109696388245
acceleration:11.539230602
float64 : (479, 479) matmul (479, 479)
i:479 use numpy:0.00521492958069
i:479 use minpy:0.00700902938843
acceleration:0.744030206136
float64 : (480, 480) matmul (480, 480)
i:480 use numpy:0.00194501876831
i:480 use minpy:0.0127508640289
acceleration:0.152540154447
float64 : (481, 481) matmul (481, 481)
i:481 use numpy:0.00198292732239
i:481 use minpy:0.0132079124451
acceleration:0.15013177371
float64 : (482, 482) matmul (482, 482)
i:482 use numpy:0.0032651424408
i:482 use minpy:0.00873398780823
acceleration:0.373843256081
float64 : (483, 483) matmul (483, 483)
i:483 use numpy:0.0026068687439
i:483 use minpy:0.00936388969421
acceleration:0.278395926162
float64 : (484, 484) matmul (484, 484)
i:484 use numpy:0.00212502479553
i:484 use minpy:0.00688099861145
acceleration:0.308825058037
float64 : (485, 485) matmul (485, 485)
i:485 use numpy:0.00364184379578
i:485 use minpy:0.00865602493286
acceleration:0.420729356029
float64 : (486, 486) matmul (486, 486)
i:486 use numpy:0.0021071434021
i:486 use minpy:0.00122809410095
acceleration:1.71578334304
float64 : (487, 487) matmul (487, 487)
i:487 use numpy:0.00295209884644
i:487 use minpy:0.00107002258301
acceleration:2.75891265597
float64 : (488, 488) matmul (488, 488)
i:488 use numpy:0.00212097167969
i:488 use minpy:0.000885009765625
acceleration:2.39655172414
float64 : (489, 489) matmul (489, 489)
i:489 use numpy:0.00846099853516
i:489 use minpy:0.0129611492157
acceleration:0.652796939095
float64 : (490, 490) matmul (490, 490)
i:490 use numpy:0.00298404693604
i:490 use minpy:0.0232119560242
acceleration:0.128556461719
float64 : (491, 491) matmul (491, 491)
i:491 use numpy:0.00238180160522
i:491 use minpy:0.0135869979858
acceleration:0.175300063171
float64 : (492, 492) matmul (492, 492)
i:492 use numpy:0.00377202033997
i:492 use minpy:0.0134241580963
acceleration:0.28098747891
float64 : (493, 493) matmul (493, 493)
i:493 use numpy:0.00225400924683
i:493 use minpy:0.0011568069458
acceleration:1.94847485573
float64 : (494, 494) matmul (494, 494)
i:494 use numpy:0.00177693367004
i:494 use minpy:0.000626087188721
acceleration:2.83815689261
float64 : (495, 495) matmul (495, 495)
i:495 use numpy:0.00236201286316
i:495 use minpy:0.00119304656982
acceleration:1.97981614708
float64 : (496, 496) matmul (496, 496)
i:496 use numpy:0.019180059433
i:496 use minpy:0.00160598754883
acceleration:11.9428444181
float64 : (497, 497) matmul (497, 497)
i:497 use numpy:0.0295510292053
i:497 use minpy:0.000931978225708
acceleration:31.707853671
float64 : (498, 498) matmul (498, 498)
i:498 use numpy:0.0094530582428
i:498 use minpy:0.000962018966675
acceleration:9.82627013631
float64 : (499, 499) matmul (499, 499)
i:499 use numpy:0.00257706642151
i:499 use minpy:0.000746011734009
acceleration:3.45445829338
float64 : (500, 500) matmul (500, 500)
i:500 use numpy:0.0024619102478
i:500 use minpy:0.00128293037415
acceleration:1.91897416837
float64 : (501, 501) matmul (501, 501)
i:501 use numpy:0.00245904922485
i:501 use minpy:0.0173029899597
acceleration:0.142117011602
float64 : (502, 502) matmul (502, 502)
i:502 use numpy:0.00255990028381
i:502 use minpy:0.00119686126709
acceleration:2.13884462151
float64 : (503, 503) matmul (503, 503)
i:503 use numpy:0.00246596336365
i:503 use minpy:0.00941109657288
acceleration:0.262027208472
float64 : (504, 504) matmul (504, 504)
i:504 use numpy:0.00255012512207
i:504 use minpy:0.00117588043213
acceleration:2.16869424169
float64 : (505, 505) matmul (505, 505)
i:505 use numpy:0.00253391265869
i:505 use minpy:0.00142097473145
acceleration:1.78322147651
float64 : (506, 506) matmul (506, 506)
i:506 use numpy:0.00191593170166
i:506 use minpy:0.000741958618164
acceleration:2.5822622108
float64 : (507, 507) matmul (507, 507)
i:507 use numpy:0.00195503234863
i:507 use minpy:0.000753164291382
acceleration:2.59575815131
float64 : (508, 508) matmul (508, 508)
i:508 use numpy:0.00833606719971
i:508 use minpy:0.012903213501
acceleration:0.646045824095
float64 : (509, 509) matmul (509, 509)
i:509 use numpy:0.0036461353302
i:509 use minpy:0.000840187072754
acceleration:4.3396708286
float64 : (510, 510) matmul (510, 510)
i:510 use numpy:0.0042929649353
i:510 use minpy:0.0127439498901
acceleration:0.33686297987
float64 : (511, 511) matmul (511, 511)
i:511 use numpy:0.00273299217224
i:511 use minpy:0.010684967041
acceleration:0.255779186005
float64 : (512, 512) matmul (512, 512)
i:512 use numpy:0.00272703170776
i:512 use minpy:0.00847721099854
acceleration:0.321689728878
float64 : (513, 513) matmul (513, 513)
i:513 use numpy:0.00284481048584
i:513 use minpy:0.00475692749023
acceleration:0.598035284683
float64 : (514, 514) matmul (514, 514)
i:514 use numpy:0.00280094146729
i:514 use minpy:0.00416088104248
acceleration:0.673160669264
float64 : (515, 515) matmul (515, 515)
i:515 use numpy:0.0028018951416
i:515 use minpy:0.00908994674683
acceleration:0.308241095316
float64 : (516, 516) matmul (516, 516)
i:516 use numpy:0.00281691551208
i:516 use minpy:0.0134029388428
acceleration:0.210171481429
float64 : (517, 517) matmul (517, 517)
i:517 use numpy:0.00280904769897
i:517 use minpy:0.00834894180298
acceleration:0.336455537152
float64 : (518, 518) matmul (518, 518)
i:518 use numpy:0.00283002853394
i:518 use minpy:0.00859308242798
acceleration:0.329337994562
float64 : (519, 519) matmul (519, 519)
i:519 use numpy:0.0028760433197
i:519 use minpy:0.00776386260986
acceleration:0.370439749417
float64 : (520, 520) matmul (520, 520)
i:520 use numpy:0.00313997268677
i:520 use minpy:0.0012538433075
acceleration:2.50427837992
float64 : (521, 521) matmul (521, 521)
i:521 use numpy:0.00588703155518
i:521 use minpy:0.000783920288086
acceleration:7.5097323601
float64 : (522, 522) matmul (522, 522)
i:522 use numpy:0.00224304199219
i:522 use minpy:0.000722885131836
acceleration:3.10290237467
float64 : (523, 523) matmul (523, 523)
i:523 use numpy:0.00288891792297
i:523 use minpy:0.00127387046814
acceleration:2.26782706345
float64 : (524, 524) matmul (524, 524)
i:524 use numpy:0.00354194641113
i:524 use minpy:0.0127911567688
acceleration:0.276905871389
float64 : (525, 525) matmul (525, 525)
i:525 use numpy:0.00262498855591
i:525 use minpy:0.00136995315552
acceleration:1.91611555865
float64 : (526, 526) matmul (526, 526)
i:526 use numpy:0.0026228427887
i:526 use minpy:0.00183391571045
acceleration:1.43018720749
float64 : (527, 527) matmul (527, 527)
i:527 use numpy:0.00430607795715
i:527 use minpy:0.017804145813
acceleration:0.241858160587
float64 : (528, 528) matmul (528, 528)
i:528 use numpy:0.00270509719849
i:528 use minpy:0.000954151153564
acceleration:2.83508245877
float64 : (529, 529) matmul (529, 529)
i:529 use numpy:0.0138099193573
i:529 use minpy:0.0111949443817
acceleration:1.23358534767
float64 : (530, 530) matmul (530, 530)
i:530 use numpy:0.00287508964539
i:530 use minpy:0.0108120441437
acceleration:0.265915455688
float64 : (531, 531) matmul (531, 531)
i:531 use numpy:0.0031430721283
i:531 use minpy:0.00593900680542
acceleration:0.529225210759
float64 : (532, 532) matmul (532, 532)
i:532 use numpy:0.00293898582458
i:532 use minpy:0.00967478752136
acceleration:0.303777816112
float64 : (533, 533) matmul (533, 533)
i:533 use numpy:0.00294899940491
i:533 use minpy:0.0101671218872
acceleration:0.290052527905
float64 : (534, 534) matmul (534, 534)
i:534 use numpy:0.00291419029236
i:534 use minpy:0.00666308403015
acceleration:0.437363581064
float64 : (535, 535) matmul (535, 535)
i:535 use numpy:0.00361299514771
i:535 use minpy:0.0252740383148
acceleration:0.14295282387
float64 : (536, 536) matmul (536, 536)
i:536 use numpy:0.00391411781311
i:536 use minpy:0.0192139148712
acceleration:0.2037126655
float64 : (537, 537) matmul (537, 537)
i:537 use numpy:0.00234818458557
i:537 use minpy:0.0193381309509
acceleration:0.12142769079
float64 : (538, 538) matmul (538, 538)
i:538 use numpy:0.00221610069275
i:538 use minpy:0.0174779891968
acceleration:0.126793801495
float64 : (539, 539) matmul (539, 539)
i:539 use numpy:0.00414705276489
i:539 use minpy:0.0206580162048
acceleration:0.200747870646
float64 : (540, 540) matmul (540, 540)
i:540 use numpy:0.0027859210968
i:540 use minpy:0.015634059906
acceleration:0.178195626315
float64 : (541, 541) matmul (541, 541)
i:541 use numpy:0.00217604637146
i:541 use minpy:0.0140509605408
acceleration:0.1548681576
float64 : (542, 542) matmul (542, 542)
i:542 use numpy:0.00308990478516
i:542 use minpy:0.014151096344
acceleration:0.21835091148
float64 : (543, 543) matmul (543, 543)
i:543 use numpy:0.00312209129333
i:543 use minpy:0.0138440132141
acceleration:0.225519236731
float64 : (544, 544) matmul (544, 544)
i:544 use numpy:0.0031201839447
i:544 use minpy:0.024551153183
acceleration:0.127089099296
float64 : (545, 545) matmul (545, 545)
i:545 use numpy:0.00253391265869
i:545 use minpy:0.0238080024719
acceleration:0.106431132208
float64 : (546, 546) matmul (546, 546)
i:546 use numpy:0.0032742023468
i:546 use minpy:0.00160217285156
acceleration:2.04360119048
float64 : (547, 547) matmul (547, 547)
i:547 use numpy:0.00278496742249
i:547 use minpy:0.0142390727997
acceleration:0.195586290039
float64 : (548, 548) matmul (548, 548)
i:548 use numpy:0.00327301025391
i:548 use minpy:0.0184810161591
acceleration:0.177101206218
float64 : (549, 549) matmul (549, 549)
i:549 use numpy:0.00317287445068
i:549 use minpy:0.0157120227814
acceleration:0.201939272545
float64 : (550, 550) matmul (550, 550)
i:550 use numpy:0.0025520324707
i:550 use minpy:0.0102300643921
acceleration:0.249463969423
float64 : (551, 551) matmul (551, 551)
i:551 use numpy:0.00738787651062
i:551 use minpy:0.0137388706207
acceleration:0.537735357918
float64 : (552, 552) matmul (552, 552)
i:552 use numpy:0.00452494621277
i:552 use minpy:0.00123691558838
acceleration:3.65824980725
float64 : (553, 553) matmul (553, 553)
i:553 use numpy:0.00403594970703
i:553 use minpy:0.0213549137115
acceleration:0.188993959964
float64 : (554, 554) matmul (554, 554)
i:554 use numpy:0.00413799285889
i:554 use minpy:0.0148301124573
acceleration:0.279026397865
float64 : (555, 555) matmul (555, 555)
i:555 use numpy:0.00346302986145
i:555 use minpy:0.015368938446
acceleration:0.225326548975
float64 : (556, 556) matmul (556, 556)
i:556 use numpy:0.00321698188782
i:556 use minpy:0.0155110359192
acceleration:0.20739955117
float64 : (557, 557) matmul (557, 557)
i:557 use numpy:0.00325202941895
i:557 use minpy:0.0137870311737
acceleration:0.235875974891
float64 : (558, 558) matmul (558, 558)
i:558 use numpy:0.0032000541687
i:558 use minpy:0.0170590877533
acceleration:0.187586476779
float64 : (559, 559) matmul (559, 559)
i:559 use numpy:0.00329995155334
i:559 use minpy:0.0012059211731
acceleration:2.73645709767
float64 : (560, 560) matmul (560, 560)
i:560 use numpy:0.00356912612915
i:560 use minpy:0.0113551616669
acceleration:0.314317508976
float64 : (561, 561) matmul (561, 561)
i:561 use numpy:0.00378394126892
i:561 use minpy:0.0174498558044
acceleration:0.216846563738
float64 : (562, 562) matmul (562, 562)
i:562 use numpy:0.00588297843933
i:562 use minpy:0.0159180164337
acceleration:0.369579869692
float64 : (563, 563) matmul (563, 563)
i:563 use numpy:0.0048189163208
i:563 use minpy:0.0168030261993
acceleration:0.286788597699
float64 : (564, 564) matmul (564, 564)
i:564 use numpy:0.00244808197021
i:564 use minpy:0.0155959129333
acceleration:0.15696945608
float64 : (565, 565) matmul (565, 565)
i:565 use numpy:0.00878405570984
i:565 use minpy:0.0138928890228
acceleration:0.632269911277
float64 : (566, 566) matmul (566, 566)
i:566 use numpy:0.00242710113525
i:566 use minpy:0.0250689983368
acceleration:0.09681683738
float64 : (567, 567) matmul (567, 567)
i:567 use numpy:0.00579285621643
i:567 use minpy:0.0254690647125
acceleration:0.227446758718
float64 : (568, 568) matmul (568, 568)
i:568 use numpy:0.0365109443665
i:568 use minpy:0.0226218700409
acceleration:1.61396667475
float64 : (569, 569) matmul (569, 569)
i:569 use numpy:0.00735187530518
i:569 use minpy:0.021870136261
acceleration:0.336160470947
float64 : (570, 570) matmul (570, 570)
i:570 use numpy:0.0023980140686
i:570 use minpy:0.0237281322479
acceleration:0.101062066055
float64 : (571, 571) matmul (571, 571)
i:571 use numpy:0.00522804260254
i:571 use minpy:0.0250480175018
acceleration:0.208720814019
float64 : (572, 572) matmul (572, 572)
i:572 use numpy:0.00239896774292
i:572 use minpy:0.0242741107941
acceleration:0.0988282439374
float64 : (573, 573) matmul (573, 573)
i:573 use numpy:0.00402808189392
i:573 use minpy:0.00497698783875
acceleration:0.809341317365
float64 : (574, 574) matmul (574, 574)
i:574 use numpy:0.00235414505005
i:574 use minpy:0.00802206993103
acceleration:0.293458554997
float64 : (575, 575) matmul (575, 575)
i:575 use numpy:0.00454998016357
i:575 use minpy:0.00524997711182
acceleration:0.866666666667
float64 : (576, 576) matmul (576, 576)
i:576 use numpy:0.00769901275635
i:576 use minpy:0.00458002090454
acceleration:1.68099947944
float64 : (577, 577) matmul (577, 577)
i:577 use numpy:0.00668001174927
i:577 use minpy:0.00416302680969
acceleration:1.60460454728
float64 : (578, 578) matmul (578, 578)
i:578 use numpy:0.00361299514771
i:578 use minpy:0.00907206535339
acceleration:0.398254973588
float64 : (579, 579) matmul (579, 579)
i:579 use numpy:0.00332999229431
i:579 use minpy:0.00185799598694
acceleration:1.79224945464
float64 : (580, 580) matmul (580, 580)
i:580 use numpy:0.00266885757446
i:580 use minpy:0.00357294082642
acceleration:0.746963832911
float64 : (581, 581) matmul (581, 581)
i:581 use numpy:0.00426292419434
i:581 use minpy:0.00360989570618
acceleration:1.18089954428
float64 : (582, 582) matmul (582, 582)
i:582 use numpy:0.00287795066833
i:582 use minpy:0.00440907478333
acceleration:0.652733466717
float64 : (583, 583) matmul (583, 583)
i:583 use numpy:0.00376796722412
i:583 use minpy:0.0045599937439
acceleration:0.826309735439
float64 : (584, 584) matmul (584, 584)
i:584 use numpy:0.00250911712646
i:584 use minpy:0.00503396987915
acceleration:0.498437055982
float64 : (585, 585) matmul (585, 585)
i:585 use numpy:0.00511407852173
i:585 use minpy:0.00371503829956
acceleration:1.3765883712
float64 : (586, 586) matmul (586, 586)
i:586 use numpy:0.00274205207825
i:586 use minpy:0.00529909133911
acceleration:0.517457032305
float64 : (587, 587) matmul (587, 587)
i:587 use numpy:0.00474715232849
i:587 use minpy:0.0034818649292
acceleration:1.3633935908
float64 : (588, 588) matmul (588, 588)
i:588 use numpy:0.00261902809143
i:588 use minpy:0.00325703620911
acceleration:0.804113900886
float64 : (589, 589) matmul (589, 589)
i:589 use numpy:0.0025839805603
i:589 use minpy:0.00435781478882
acceleration:0.592953277164
float64 : (590, 590) matmul (590, 590)
i:590 use numpy:0.00298500061035
i:590 use minpy:0.00341320037842
acceleration:0.874545962559
float64 : (591, 591) matmul (591, 591)
i:591 use numpy:0.00607085227966
i:591 use minpy:0.00664806365967
acceleration:0.913176014919
float64 : (592, 592) matmul (592, 592)
i:592 use numpy:0.00297689437866
i:592 use minpy:0.00332498550415
acceleration:0.895310483293
float64 : (593, 593) matmul (593, 593)
i:593 use numpy:0.00270700454712
i:593 use minpy:0.00132608413696
acceleration:2.04135203164
float64 : (594, 594) matmul (594, 594)
i:594 use numpy:0.00261807441711
i:594 use minpy:0.0146930217743
acceleration:0.178184886495
float64 : (595, 595) matmul (595, 595)
i:595 use numpy:0.00637006759644
i:595 use minpy:0.0239660739899
acceleration:0.265795206972
float64 : (596, 596) matmul (596, 596)
i:596 use numpy:0.00289297103882
i:596 use minpy:0.0256018638611
acceleration:0.112998454117
float64 : (597, 597) matmul (597, 597)
i:597 use numpy:0.00500798225403
i:597 use minpy:0.0146999359131
acceleration:0.340680550149
float64 : (598, 598) matmul (598, 598)
i:598 use numpy:0.00827884674072
i:598 use minpy:0.00157594680786
acceleration:5.2532526475
float64 : (599, 599) matmul (599, 599)
i:599 use numpy:0.00298595428467
i:599 use minpy:0.000942945480347
acceleration:3.16662452592
float64 : (600, 600) matmul (600, 600)
i:600 use numpy:0.00701999664307
i:600 use minpy:0.000913143157959
acceleration:7.68772845953
float64 : (601, 601) matmul (601, 601)
i:601 use numpy:0.00520706176758
i:601 use minpy:0.0129311084747
acceleration:0.402677139222
float64 : (602, 602) matmul (602, 602)
i:602 use numpy:0.0088357925415
i:602 use minpy:0.0141100883484
acceleration:0.626203913352
float64 : (603, 603) matmul (603, 603)
i:603 use numpy:0.00314497947693
i:603 use minpy:0.000929832458496
acceleration:3.38230769231
float64 : (604, 604) matmul (604, 604)
i:604 use numpy:0.00491189956665
i:604 use minpy:0.00156807899475
acceleration:3.13243119964
float64 : (605, 605) matmul (605, 605)
i:605 use numpy:0.0144460201263
i:605 use minpy:0.00170707702637
acceleration:8.4624301676
float64 : (606, 606) matmul (606, 606)
i:606 use numpy:0.0115849971771
i:606 use minpy:0.000919818878174
acceleration:12.5948678072
float64 : (607, 607) matmul (607, 607)
i:607 use numpy:0.0117180347443
i:607 use minpy:0.000983953475952
acceleration:11.9091349649
float64 : (608, 608) matmul (608, 608)
i:608 use numpy:0.00880193710327
i:608 use minpy:0.00105619430542
acceleration:8.33363431151
float64 : (609, 609) matmul (609, 609)
i:609 use numpy:0.00415587425232
i:609 use minpy:0.0146770477295
acceleration:0.283154645874
float64 : (610, 610) matmul (610, 610)
i:610 use numpy:0.00311088562012
i:610 use minpy:0.00138306617737
acceleration:2.2492673677
float64 : (611, 611) matmul (611, 611)
i:611 use numpy:0.0130500793457
i:611 use minpy:0.0151398181915
acceleration:0.861970677627
float64 : (612, 612) matmul (612, 612)
i:612 use numpy:0.00429010391235
i:612 use minpy:0.0239458084106
acceleration:0.179158867338
float64 : (613, 613) matmul (613, 613)
i:613 use numpy:0.00491499900818
i:613 use minpy:0.00715494155884
acceleration:0.686937687438
float64 : (614, 614) matmul (614, 614)
i:614 use numpy:0.00511002540588
i:614 use minpy:0.00690698623657
acceleration:0.739834311357
float64 : (615, 615) matmul (615, 615)
i:615 use numpy:0.00423622131348
i:615 use minpy:0.00127506256104
acceleration:3.32236350037
float64 : (616, 616) matmul (616, 616)
i:616 use numpy:0.0029718875885
i:616 use minpy:0.00319886207581
acceleration:0.929045241112
float64 : (617, 617) matmul (617, 617)
i:617 use numpy:0.00319981575012
i:617 use minpy:0.00164985656738
acceleration:1.93945086705
float64 : (618, 618) matmul (618, 618)
i:618 use numpy:0.00302505493164
i:618 use minpy:0.00140905380249
acceleration:2.14686971235
float64 : (619, 619) matmul (619, 619)
i:619 use numpy:0.00338411331177
i:619 use minpy:0.0145628452301
acceleration:0.232379954487
float64 : (620, 620) matmul (620, 620)
i:620 use numpy:0.00323987007141
i:620 use minpy:0.0146088600159
acceleration:0.221774325162
float64 : (621, 621) matmul (621, 621)
i:621 use numpy:0.00426077842712
i:621 use minpy:0.0144150257111
acceleration:0.295578968261
float64 : (622, 622) matmul (622, 622)
i:622 use numpy:0.00214290618896
i:622 use minpy:0.0152359008789
acceleration:0.140648472709
float64 : (623, 623) matmul (623, 623)
i:623 use numpy:0.00420594215393
i:623 use minpy:0.0157458782196
acceleration:0.267113850067
float64 : (624, 624) matmul (624, 624)
i:624 use numpy:0.00358295440674
i:624 use minpy:0.00144600868225
acceleration:2.47782357791
float64 : (625, 625) matmul (625, 625)
i:625 use numpy:0.00349402427673
i:625 use minpy:0.00200915336609
acceleration:1.73905304379
float64 : (626, 626) matmul (626, 626)
i:626 use numpy:0.00344896316528
i:626 use minpy:0.0377590656281
acceleration:0.0913413271202
float64 : (627, 627) matmul (627, 627)
i:627 use numpy:0.00433492660522
i:627 use minpy:0.0228688716888
acceleration:0.189555771015
float64 : (628, 628) matmul (628, 628)
i:628 use numpy:0.00444507598877
i:628 use minpy:0.00178503990173
acceleration:2.49018298384
float64 : (629, 629) matmul (629, 629)
i:629 use numpy:0.00348687171936
i:629 use minpy:0.0150279998779
acceleration:0.232025003173
float64 : (630, 630) matmul (630, 630)
i:630 use numpy:0.00311994552612
i:630 use minpy:0.00242900848389
acceleration:1.28445229682
float64 : (631, 631) matmul (631, 631)
i:631 use numpy:0.00419092178345
i:631 use minpy:0.00147080421448
acceleration:2.84940833198
float64 : (632, 632) matmul (632, 632)
i:632 use numpy:0.00505995750427
i:632 use minpy:0.00429606437683
acceleration:1.17781230923
float64 : (633, 633) matmul (633, 633)
i:633 use numpy:0.00295805931091
i:633 use minpy:0.00100708007812
acceleration:2.93726325758
float64 : (634, 634) matmul (634, 634)
i:634 use numpy:0.00250887870789
i:634 use minpy:0.00171804428101
acceleration:1.46031085207
float64 : (635, 635) matmul (635, 635)
i:635 use numpy:0.00226211547852
i:635 use minpy:0.00101685523987
acceleration:2.22461899179
float64 : (636, 636) matmul (636, 636)
i:636 use numpy:0.00324082374573
i:636 use minpy:0.0113220214844
acceleration:0.286240734501
float64 : (637, 637) matmul (637, 637)
i:637 use numpy:0.00484895706177
i:637 use minpy:0.0220930576324
acceleration:0.219478767604
float64 : (638, 638) matmul (638, 638)
i:638 use numpy:0.00372004508972
i:638 use minpy:0.00101709365845
acceleration:3.65752461322
float64 : (639, 639) matmul (639, 639)
i:639 use numpy:0.00400185585022
i:639 use minpy:0.00210309028625
acceleration:1.90284548237
float64 : (640, 640) matmul (640, 640)
i:640 use numpy:0.00331687927246
i:640 use minpy:0.00173282623291
acceleration:1.91414419373
float64 : (641, 641) matmul (641, 641)
i:641 use numpy:0.00748515129089
i:641 use minpy:0.00151395797729
acceleration:4.94409448819
float64 : (642, 642) matmul (642, 642)
i:642 use numpy:0.0023398399353
i:642 use minpy:0.00103211402893
acceleration:2.26703626704
float64 : (643, 643) matmul (643, 643)
i:643 use numpy:0.00350618362427
i:643 use minpy:0.00211596488953
acceleration:1.65701408451
float64 : (644, 644) matmul (644, 644)
i:644 use numpy:0.00334906578064
i:644 use minpy:0.0150640010834
acceleration:0.222322460155
float64 : (645, 645) matmul (645, 645)
i:645 use numpy:0.00347590446472
i:645 use minpy:0.00949001312256
acceleration:0.366269721636
float64 : (646, 646) matmul (646, 646)
i:646 use numpy:0.00235605239868
i:646 use minpy:0.0135290622711
acceleration:0.174147501983
float64 : (647, 647) matmul (647, 647)
i:647 use numpy:0.00485110282898
i:647 use minpy:0.0153870582581
acceleration:0.31527162292
float64 : (648, 648) matmul (648, 648)
i:648 use numpy:0.00607895851135
i:648 use minpy:0.0149929523468
acceleration:0.405454400891
float64 : (649, 649) matmul (649, 649)
i:649 use numpy:0.00489497184753
i:649 use minpy:0.0147840976715
acceleration:0.331097098808
float64 : (650, 650) matmul (650, 650)
i:650 use numpy:0.0038480758667
i:650 use minpy:0.0135478973389
acceleration:0.284034914825
float64 : (651, 651) matmul (651, 651)
i:651 use numpy:0.00486302375793
i:651 use minpy:0.00217294692993
acceleration:2.23798551679
float64 : (652, 652) matmul (652, 652)
i:652 use numpy:0.00360679626465
i:652 use minpy:0.00451707839966
acceleration:0.798479890214
float64 : (653, 653) matmul (653, 653)
i:653 use numpy:0.00250005722046
i:653 use minpy:0.00406694412231
acceleration:0.614726228163
float64 : (654, 654) matmul (654, 654)
i:654 use numpy:0.00349998474121
i:654 use minpy:0.00519704818726
acceleration:0.673456280393
float64 : (655, 655) matmul (655, 655)
i:655 use numpy:0.00431299209595
i:655 use minpy:0.00469088554382
acceleration:0.919440914867
float64 : (656, 656) matmul (656, 656)
i:656 use numpy:0.00363802909851
i:656 use minpy:0.00473880767822
acceleration:0.767709800765
float64 : (657, 657) matmul (657, 657)
i:657 use numpy:0.00357890129089
i:657 use minpy:0.00456595420837
acceleration:0.783823299044
float64 : (658, 658) matmul (658, 658)
i:658 use numpy:0.00352692604065
i:658 use minpy:0.00524592399597
acceleration:0.672317411262
float64 : (659, 659) matmul (659, 659)
i:659 use numpy:0.0045440196991
i:659 use minpy:0.00938510894775
acceleration:0.484173356366
float64 : (660, 660) matmul (660, 660)
i:660 use numpy:0.0037088394165
i:660 use minpy:0.00156903266907
acceleration:2.36377450236
float64 : (661, 661) matmul (661, 661)
i:661 use numpy:0.00354194641113
i:661 use minpy:0.00235390663147
acceleration:1.50470981465
float64 : (662, 662) matmul (662, 662)
i:662 use numpy:0.00371503829956
i:662 use minpy:0.00185108184814
acceleration:2.00695517774
float64 : (663, 663) matmul (663, 663)
i:663 use numpy:0.00379705429077
i:663 use minpy:0.00157308578491
acceleration:2.41376174598
float64 : (664, 664) matmul (664, 664)
i:664 use numpy:0.00304698944092
i:664 use minpy:0.00492382049561
acceleration:0.6188262638
float64 : (665, 665) matmul (665, 665)
i:665 use numpy:0.00354385375977
i:665 use minpy:0.00538110733032
acceleration:0.658573327426
float64 : (666, 666) matmul (666, 666)
i:666 use numpy:0.00425505638123
i:666 use minpy:0.00483322143555
acceleration:0.880376874507
float64 : (667, 667) matmul (667, 667)
i:667 use numpy:0.00351691246033
i:667 use minpy:0.00567388534546
acceleration:0.61984200353
float64 : (668, 668) matmul (668, 668)
i:668 use numpy:0.00369787216187
i:668 use minpy:0.00474095344543
acceleration:0.779984913251
float64 : (669, 669) matmul (669, 669)
i:669 use numpy:0.00508999824524
i:669 use minpy:0.00564694404602
acceleration:0.901372176483
float64 : (670, 670) matmul (670, 670)
i:670 use numpy:0.00497913360596
i:670 use minpy:0.00186491012573
acceleration:2.66990539504
float64 : (671, 671) matmul (671, 671)
i:671 use numpy:0.0037100315094
i:671 use minpy:0.00512886047363
acceleration:0.723363703979
float64 : (672, 672) matmul (672, 672)
i:672 use numpy:0.00346708297729
i:672 use minpy:0.0046980381012
acceleration:0.737985282923
float64 : (673, 673) matmul (673, 673)
i:673 use numpy:0.00379800796509
i:673 use minpy:0.00534105300903
acceleration:0.711097223462
float64 : (674, 674) matmul (674, 674)
i:674 use numpy:0.0165898799896
i:674 use minpy:0.00724792480469
acceleration:2.28891447368
float64 : (675, 675) matmul (675, 675)
i:675 use numpy:0.00493979454041
i:675 use minpy:0.00163006782532
acceleration:3.03042270001
float64 : (676, 676) matmul (676, 676)
i:676 use numpy:0.00516796112061
i:676 use minpy:0.0319530963898
acceleration:0.161735847367
float64 : (677, 677) matmul (677, 677)
i:677 use numpy:0.00515699386597
i:677 use minpy:0.00235080718994
acceleration:2.19371196755
float64 : (678, 678) matmul (678, 678)
i:678 use numpy:0.00514793395996
i:678 use minpy:0.00191688537598
acceleration:2.6855721393
float64 : (679, 679) matmul (679, 679)
i:679 use numpy:0.00516200065613
i:679 use minpy:0.00240802764893
acceleration:2.14366336634
float64 : (680, 680) matmul (680, 680)
i:680 use numpy:0.00517392158508
i:680 use minpy:0.00204992294312
acceleration:2.52395906025
float64 : (681, 681) matmul (681, 681)
i:681 use numpy:0.00515508651733
i:681 use minpy:0.0160341262817
acceleration:0.321507167073
float64 : (682, 682) matmul (682, 682)
i:682 use numpy:0.00372505187988
i:682 use minpy:0.00537490844727
acceleration:0.693044712562
float64 : (683, 683) matmul (683, 683)
i:683 use numpy:0.00390195846558
i:683 use minpy:0.005126953125
acceleration:0.761067708333
float64 : (684, 684) matmul (684, 684)
i:684 use numpy:0.0048041343689
i:684 use minpy:0.00555109977722
acceleration:0.865438302624
float64 : (685, 685) matmul (685, 685)
i:685 use numpy:0.00376605987549
i:685 use minpy:0.00519609451294
acceleration:0.724786638524
float64 : (686, 686) matmul (686, 686)
i:686 use numpy:0.00393605232239
i:686 use minpy:0.00590801239014
acceleration:0.666222760291
float64 : (687, 687) matmul (687, 687)
i:687 use numpy:0.00389409065247
i:687 use minpy:0.00547385215759
acceleration:0.711398580078
float64 : (688, 688) matmul (688, 688)
i:688 use numpy:0.00516295433044
i:688 use minpy:0.00516104698181
acceleration:1.00036956622
float64 : (689, 689) matmul (689, 689)
i:689 use numpy:0.00956606864929
i:689 use minpy:0.00538897514343
acceleration:1.77511834712
float64 : (690, 690) matmul (690, 690)
i:690 use numpy:0.00460696220398
i:690 use minpy:0.0052011013031
acceleration:0.885766674307
float64 : (691, 691) matmul (691, 691)
i:691 use numpy:0.00520992279053
i:691 use minpy:0.00596404075623
acceleration:0.87355586648
float64 : (692, 692) matmul (692, 692)
i:692 use numpy:0.00594305992126
i:692 use minpy:0.0055079460144
acceleration:1.07899748939
float64 : (693, 693) matmul (693, 693)
i:693 use numpy:0.00701713562012
i:693 use minpy:0.0244629383087
acceleration:0.286847619512
float64 : (694, 694) matmul (694, 694)
i:694 use numpy:0.0040500164032
i:694 use minpy:0.00566482543945
acceleration:0.714941077441
float64 : (695, 695) matmul (695, 695)
i:695 use numpy:0.00391411781311
i:695 use minpy:0.00559902191162
acceleration:0.699071708397
float64 : (696, 696) matmul (696, 696)
i:696 use numpy:0.00389814376831
i:696 use minpy:0.00643014907837
acceleration:0.606229143493
float64 : (697, 697) matmul (697, 697)
i:697 use numpy:0.00399494171143
i:697 use minpy:0.00563907623291
acceleration:0.70843903264
float64 : (698, 698) matmul (698, 698)
i:698 use numpy:0.00400686264038
i:698 use minpy:0.0053699016571
acceleration:0.746170581184
float64 : (699, 699) matmul (699, 699)
i:699 use numpy:0.00461101531982
i:699 use minpy:0.00566601753235
acceleration:0.813801809384
float64 : (700, 700) matmul (700, 700)
i:700 use numpy:0.00536799430847
i:700 use minpy:0.00549507141113
acceleration:0.976874349184
float64 : (701, 701) matmul (701, 701)
i:701 use numpy:0.00425410270691
i:701 use minpy:0.00651216506958
acceleration:0.653254741158
float64 : (702, 702) matmul (702, 702)
i:702 use numpy:0.0040979385376
i:702 use minpy:0.00595688819885
acceleration:0.687932759656
float64 : (703, 703) matmul (703, 703)
i:703 use numpy:0.00412392616272
i:703 use minpy:0.00549101829529
acceleration:0.751031218792
float64 : (704, 704) matmul (704, 704)
i:704 use numpy:0.0041618347168
i:704 use minpy:0.00558805465698
acceleration:0.744773444833
float64 : (705, 705) matmul (705, 705)
i:705 use numpy:0.00422787666321
i:705 use minpy:0.0054349899292
acceleration:0.777899631514
float64 : (706, 706) matmul (706, 706)
i:706 use numpy:0.00439405441284
i:706 use minpy:0.0154139995575
acceleration:0.285069063124
float64 : (707, 707) matmul (707, 707)
i:707 use numpy:0.00423789024353
i:707 use minpy:0.0228910446167
acceleration:0.185133108361
float64 : (708, 708) matmul (708, 708)
i:708 use numpy:0.0083179473877
i:708 use minpy:0.0221018791199
acceleration:0.376345709909
float64 : (709, 709) matmul (709, 709)
i:709 use numpy:0.00624513626099
i:709 use minpy:0.00353503227234
acceleration:1.76664193701
float64 : (710, 710) matmul (710, 710)
i:710 use numpy:0.00516796112061
i:710 use minpy:0.0206677913666
acceleration:0.250049026959
float64 : (711, 711) matmul (711, 711)
i:711 use numpy:0.0185239315033
i:711 use minpy:0.0238997936249
acceleration:0.775066588191
float64 : (712, 712) matmul (712, 712)
i:712 use numpy:0.00612020492554
i:712 use minpy:0.0257530212402
acceleration:0.237649977781
float64 : (713, 713) matmul (713, 713)
i:713 use numpy:0.00611901283264
i:713 use minpy:0.00522398948669
acceleration:1.17132946922
float64 : (714, 714) matmul (714, 714)
i:714 use numpy:0.00318503379822
i:714 use minpy:0.0402920246124
acceleration:0.0790487405102
float64 : (715, 715) matmul (715, 715)
i:715 use numpy:0.00509905815125
i:715 use minpy:0.016606092453
acceleration:0.307059482276
float64 : (716, 716) matmul (716, 716)
i:716 use numpy:0.00427389144897
i:716 use minpy:0.0312728881836
acceleration:0.136664430349
float64 : (717, 717) matmul (717, 717)
i:717 use numpy:0.00664401054382
i:717 use minpy:0.0170819759369
acceleration:0.388948595196
float64 : (718, 718) matmul (718, 718)
i:718 use numpy:0.00513291358948
i:718 use minpy:0.0127291679382
acceleration:0.403240307174
float64 : (719, 719) matmul (719, 719)
i:719 use numpy:0.00442409515381
i:719 use minpy:0.00747489929199
acceleration:0.59186016841
float64 : (720, 720) matmul (720, 720)
i:720 use numpy:0.00434899330139
i:720 use minpy:0.0133459568024
acceleration:0.325865980671
float64 : (721, 721) matmul (721, 721)
i:721 use numpy:0.00435304641724
i:721 use minpy:0.0160582065582
acceleration:0.271079239232
float64 : (722, 722) matmul (722, 722)
i:722 use numpy:0.00437998771667
i:722 use minpy:0.00958323478699
acceleration:0.45704689638
float64 : (723, 723) matmul (723, 723)
i:723 use numpy:0.00669312477112
i:723 use minpy:0.0156428813934
acceleration:0.427870326622
float64 : (724, 724) matmul (724, 724)
i:724 use numpy:0.00438618659973
i:724 use minpy:0.0139911174774
acceleration:0.313497946594
float64 : (725, 725) matmul (725, 725)
i:725 use numpy:0.00615286827087
i:725 use minpy:0.0123400688171
acceleration:0.4986089107
float64 : (726, 726) matmul (726, 726)
i:726 use numpy:0.0287549495697
i:726 use minpy:0.00192403793335
acceleration:14.9451053284
float64 : (727, 727) matmul (727, 727)
i:727 use numpy:0.00704407691956
i:727 use minpy:0.0023398399353
acceleration:3.01049521092
float64 : (728, 728) matmul (728, 728)
i:728 use numpy:0.00678491592407
i:728 use minpy:0.00121212005615
acceleration:5.59756097561
float64 : (729, 729) matmul (729, 729)
i:729 use numpy:0.00672507286072
i:729 use minpy:0.0013279914856
acceleration:5.06409335727
float64 : (730, 730) matmul (730, 730)
i:730 use numpy:0.00460696220398
i:730 use minpy:0.0232748985291
acceleration:0.197936940444
float64 : (731, 731) matmul (731, 731)
i:731 use numpy:0.00485491752625
i:731 use minpy:0.00187802314758
acceleration:2.58512123905
float64 : (732, 732) matmul (732, 732)
i:732 use numpy:0.00681209564209
i:732 use minpy:0.0027539730072
acceleration:2.47355207341
float64 : (733, 733) matmul (733, 733)
i:733 use numpy:0.00474882125854
i:733 use minpy:0.00218605995178
acceleration:2.17231977315
float64 : (734, 734) matmul (734, 734)
i:734 use numpy:0.00548100471497
i:734 use minpy:0.00189208984375
acceleration:2.89679939516
float64 : (735, 735) matmul (735, 735)
i:735 use numpy:0.00358700752258
i:735 use minpy:0.00125813484192
acceleration:2.85105173394
float64 : (736, 736) matmul (736, 736)
i:736 use numpy:0.0265622138977
i:736 use minpy:0.0276291370392
acceleration:0.961384130819
float64 : (737, 737) matmul (737, 737)
i:737 use numpy:0.00573086738586
i:737 use minpy:0.0258839130402
acceleration:0.22140653065
float64 : (738, 738) matmul (738, 738)
i:738 use numpy:0.00512599945068
i:738 use minpy:0.0256459712982
acceleration:0.199875426478
float64 : (739, 739) matmul (739, 739)
i:739 use numpy:0.00524997711182
i:739 use minpy:0.0260441303253
acceleration:0.201580050715
float64 : (740, 740) matmul (740, 740)
i:740 use numpy:0.00483512878418
i:740 use minpy:0.02472615242
acceleration:0.195547155985
float64 : (741, 741) matmul (741, 741)
i:741 use numpy:0.00970506668091
i:741 use minpy:0.00227904319763
acceleration:4.25839522963
float64 : (742, 742) matmul (742, 742)
i:742 use numpy:0.0047619342804
i:742 use minpy:0.00275897979736
acceleration:1.72597649499
float64 : (743, 743) matmul (743, 743)
i:743 use numpy:0.00501108169556
i:743 use minpy:0.00235509872437
acceleration:2.1277586556
float64 : (744, 744) matmul (744, 744)
i:744 use numpy:0.00597095489502
i:744 use minpy:0.00191402435303
acceleration:3.11958146487
float64 : (745, 745) matmul (745, 745)
i:745 use numpy:0.00366806983948
i:745 use minpy:0.00127696990967
acceleration:2.87247946229
float64 : (746, 746) matmul (746, 746)
i:746 use numpy:0.00489187240601
i:746 use minpy:0.002769947052
acceleration:1.76605267688
float64 : (747, 747) matmul (747, 747)
i:747 use numpy:0.00566411018372
i:747 use minpy:0.00192403793335
acceleration:2.943866171
float64 : (748, 748) matmul (748, 748)
i:748 use numpy:0.00355505943298
i:748 use minpy:0.00127506256104
acceleration:2.78814510097
float64 : (749, 749) matmul (749, 749)
i:749 use numpy:0.00498199462891
i:749 use minpy:0.00278377532959
acceleration:1.78965399109
float64 : (750, 750) matmul (750, 750)
i:750 use numpy:0.00705504417419
i:750 use minpy:0.00195407867432
acceleration:3.61041971694
float64 : (751, 751) matmul (751, 751)
i:751 use numpy:0.00359892845154
i:751 use minpy:0.0013120174408
acceleration:2.74304924587
float64 : (752, 752) matmul (752, 752)
i:752 use numpy:0.00511002540588
i:752 use minpy:0.00293302536011
acceleration:1.74223703463
float64 : (753, 753) matmul (753, 753)
i:753 use numpy:0.00495481491089
i:753 use minpy:0.00195407867432
acceleration:2.53562713519
float64 : (754, 754) matmul (754, 754)
i:754 use numpy:0.00356602668762
i:754 use minpy:0.00131392478943
acceleration:2.71402649247
float64 : (755, 755) matmul (755, 755)
i:755 use numpy:0.00496792793274
i:755 use minpy:0.00300884246826
acceleration:1.65110935024
float64 : (756, 756) matmul (756, 756)
i:756 use numpy:0.0050048828125
i:756 use minpy:0.00197100639343
acceleration:2.5392524495
float64 : (757, 757) matmul (757, 757)
i:757 use numpy:0.00358486175537
i:757 use minpy:0.00130891799927
acceleration:2.73879781421
float64 : (758, 758) matmul (758, 758)
i:758 use numpy:0.00533986091614
i:758 use minpy:0.00303101539612
acceleration:1.76173995123
float64 : (759, 759) matmul (759, 759)
i:759 use numpy:0.00711798667908
i:759 use minpy:0.0021870136261
acceleration:3.25466041644
float64 : (760, 760) matmul (760, 760)
i:760 use numpy:0.00524091720581
i:760 use minpy:0.00149703025818
acceleration:3.50087593566
float64 : (761, 761) matmul (761, 761)
i:761 use numpy:0.00640416145325
i:761 use minpy:0.00296807289124
acceleration:2.15768334806
float64 : (762, 762) matmul (762, 762)
i:762 use numpy:0.0188128948212
i:762 use minpy:0.00247097015381
acceleration:7.61356619066
float64 : (763, 763) matmul (763, 763)
i:763 use numpy:0.00345301628113
i:763 use minpy:0.0013861656189
acceleration:2.49105607155
float64 : (764, 764) matmul (764, 764)
i:764 use numpy:0.00525307655334
i:764 use minpy:0.00293707847595
acceleration:1.78853803068
float64 : (765, 765) matmul (765, 765)
i:765 use numpy:0.00489115715027
i:765 use minpy:0.00202107429504
acceleration:2.42007785773
float64 : (766, 766) matmul (766, 766)
i:766 use numpy:0.00340795516968
i:766 use minpy:0.00134801864624
acceleration:2.52812168376
float64 : (767, 767) matmul (767, 767)
i:767 use numpy:0.00572991371155
i:767 use minpy:0.00302600860596
acceleration:1.89355499527
float64 : (768, 768) matmul (768, 768)
i:768 use numpy:0.00680613517761
i:768 use minpy:0.00204014778137
acceleration:3.33609910015
float64 : (769, 769) matmul (769, 769)
i:769 use numpy:0.00541114807129
i:769 use minpy:0.00134205818176
acceleration:4.03197726061
float64 : (770, 770) matmul (770, 770)
i:770 use numpy:0.00513982772827
i:770 use minpy:0.00308394432068
acceleration:1.66664089679
float64 : (771, 771) matmul (771, 771)
i:771 use numpy:0.00539302825928
i:771 use minpy:0.002112865448
acceleration:2.55247122546
float64 : (772, 772) matmul (772, 772)
i:772 use numpy:0.0043580532074
i:772 use minpy:0.00139093399048
acceleration:3.13318477888
float64 : (773, 773) matmul (773, 773)
i:773 use numpy:0.00650310516357
i:773 use minpy:0.00299882888794
acceleration:2.16854825886
float64 : (774, 774) matmul (774, 774)
i:774 use numpy:0.00517201423645
i:774 use minpy:0.00207209587097
acceleration:2.49603037625
float64 : (775, 775) matmul (775, 775)
i:775 use numpy:0.00622701644897
i:775 use minpy:0.00138998031616
acceleration:4.47993138937
float64 : (776, 776) matmul (776, 776)
i:776 use numpy:0.00570011138916
i:776 use minpy:0.00334501266479
acceleration:1.70406272274
float64 : (777, 777) matmul (777, 777)
i:777 use numpy:0.0051429271698
i:777 use minpy:0.00344204902649
acceleration:1.49414698345
float64 : (778, 778) matmul (778, 778)
i:778 use numpy:0.00462889671326
i:778 use minpy:0.00135707855225
acceleration:3.41092761771
float64 : (779, 779) matmul (779, 779)
i:779 use numpy:0.00654196739197
i:779 use minpy:0.00303983688354
acceleration:2.15207843137
float64 : (780, 780) matmul (780, 780)
i:780 use numpy:0.00519013404846
i:780 use minpy:0.00218796730042
acceleration:2.37212596709
float64 : (781, 781) matmul (781, 781)
i:781 use numpy:0.0054349899292
i:781 use minpy:0.00135898590088
acceleration:3.99929824561
float64 : (782, 782) matmul (782, 782)
i:782 use numpy:0.00528907775879
i:782 use minpy:0.00347805023193
acceleration:1.52070194681
float64 : (783, 783) matmul (783, 783)
i:783 use numpy:0.00515294075012
i:783 use minpy:0.00332093238831
acceleration:1.55165482088
float64 : (784, 784) matmul (784, 784)
i:784 use numpy:0.00525498390198
i:784 use minpy:0.00215983390808
acceleration:2.43305000552
float64 : (785, 785) matmul (785, 785)
i:785 use numpy:0.0042610168457
i:785 use minpy:0.00143599510193
acceleration:2.96729204715
float64 : (786, 786) matmul (786, 786)
i:786 use numpy:0.00539684295654
i:786 use minpy:0.00391411781311
acceleration:1.37881464336
float64 : (787, 787) matmul (787, 787)
i:787 use numpy:0.00529479980469
i:787 use minpy:0.00214099884033
acceleration:2.47305122494
float64 : (788, 788) matmul (788, 788)
i:788 use numpy:0.00375199317932
i:788 use minpy:0.00145506858826
acceleration:2.57856791742
float64 : (789, 789) matmul (789, 789)
i:789 use numpy:0.00696992874146
i:789 use minpy:0.00323891639709
acceleration:2.15193227825
float64 : (790, 790) matmul (790, 790)
i:790 use numpy:0.00590300559998
i:790 use minpy:0.00221800804138
acceleration:2.66139954853
float64 : (791, 791) matmul (791, 791)
i:791 use numpy:0.00378680229187
i:791 use minpy:0.0014181137085
acceleration:2.67030934768
float64 : (792, 792) matmul (792, 792)
i:792 use numpy:0.00814700126648
i:792 use minpy:0.00312399864197
acceleration:2.60787605892
float64 : (793, 793) matmul (793, 793)
i:793 use numpy:0.0073561668396
i:793 use minpy:0.00215196609497
acceleration:3.41834699756
float64 : (794, 794) matmul (794, 794)
i:794 use numpy:0.00394201278687
i:794 use minpy:0.00182390213013
acceleration:2.16130718954
float64 : (795, 795) matmul (795, 795)
i:795 use numpy:0.00651407241821
i:795 use minpy:0.00322604179382
acceleration:2.01921513561
float64 : (796, 796) matmul (796, 796)
i:796 use numpy:0.0103368759155
i:796 use minpy:0.0022919178009
acceleration:4.51014251534
float64 : (797, 797) matmul (797, 797)
i:797 use numpy:0.00507092475891
i:797 use minpy:0.0255179405212
acceleration:0.198719985051
float64 : (798, 798) matmul (798, 798)
i:798 use numpy:0.00630593299866
i:798 use minpy:0.0132691860199
acceleration:0.475231335909
float64 : (799, 799) matmul (799, 799)
i:799 use numpy:0.00568008422852
i:799 use minpy:0.00677394866943
acceleration:0.838518935661
float64 : (800, 800) matmul (800, 800)
i:800 use numpy:0.00563383102417
i:800 use minpy:0.0068690776825
acceleration:0.820172850647
float64 : (801, 801) matmul (801, 801)
i:801 use numpy:0.00682806968689
i:801 use minpy:0.00653982162476
acceleration:1.04407582938
float64 : (802, 802) matmul (802, 802)
i:802 use numpy:0.00715804100037
i:802 use minpy:0.00745511054993
acceleration:0.960152227446
float64 : (803, 803) matmul (803, 803)
i:803 use numpy:0.00716710090637
i:803 use minpy:0.00691199302673
acceleration:1.03690800593
float64 : (804, 804) matmul (804, 804)
i:804 use numpy:0.00809407234192
i:804 use minpy:0.00694417953491
acceleration:1.165590881
float64 : (805, 805) matmul (805, 805)
i:805 use numpy:0.00579500198364
i:805 use minpy:0.00812292098999
acceleration:0.713413560317
float64 : (806, 806) matmul (806, 806)
i:806 use numpy:0.0377790927887
i:806 use minpy:0.00716519355774
acceleration:5.27258509966
float64 : (807, 807) matmul (807, 807)
i:807 use numpy:0.00868105888367
i:807 use minpy:0.00766396522522
acceleration:1.13271115259
float64 : (808, 808) matmul (808, 808)
i:808 use numpy:0.00661420822144
i:808 use minpy:0.0069420337677
acceleration:0.952776728372
float64 : (809, 809) matmul (809, 809)
i:809 use numpy:0.00600218772888
i:809 use minpy:0.00664210319519
acceleration:0.903657704871
float64 : (810, 810) matmul (810, 810)
i:810 use numpy:0.00638008117676
i:810 use minpy:0.0213329792023
acceleration:0.299071269712
float64 : (811, 811) matmul (811, 811)
i:811 use numpy:0.00675797462463
i:811 use minpy:0.0238349437714
acceleration:0.283532224345
float64 : (812, 812) matmul (812, 812)
i:812 use numpy:0.00671696662903
i:812 use minpy:0.0297358036041
acceleration:0.225888182423
float64 : (813, 813) matmul (813, 813)
i:813 use numpy:0.00567102432251
i:813 use minpy:0.0285890102386
acceleration:0.198363786475
float64 : (814, 814) matmul (814, 814)
i:814 use numpy:0.00613498687744
i:814 use minpy:0.027083158493
acceleration:0.226524054756
float64 : (815, 815) matmul (815, 815)
i:815 use numpy:0.0056939125061
i:815 use minpy:0.025374174118
acceleration:0.224397944131
float64 : (816, 816) matmul (816, 816)
i:816 use numpy:0.00553107261658
i:816 use minpy:0.0249629020691
acceleration:0.221571698726
float64 : (817, 817) matmul (817, 817)
i:817 use numpy:0.00567102432251
i:817 use minpy:0.0263249874115
acceleration:0.215423629036
float64 : (818, 818) matmul (818, 818)
i:818 use numpy:0.00561094284058
i:818 use minpy:0.0279381275177
acceleration:0.200834606293
float64 : (819, 819) matmul (819, 819)
i:819 use numpy:0.00584197044373
i:819 use minpy:0.0237908363342
acceleration:0.245555488746
float64 : (820, 820) matmul (820, 820)
i:820 use numpy:0.00587797164917
i:820 use minpy:0.0248610973358
acceleration:0.236432510189
float64 : (821, 821) matmul (821, 821)
i:821 use numpy:0.00577616691589
i:821 use minpy:0.0254890918732
acceleration:0.226613287936
float64 : (822, 822) matmul (822, 822)
i:822 use numpy:0.00578713417053
i:822 use minpy:0.0266740322113
acceleration:0.216957605985
float64 : (823, 823) matmul (823, 823)
i:823 use numpy:0.00866389274597
i:823 use minpy:0.0256938934326
acceleration:0.337196570411
float64 : (824, 824) matmul (824, 824)
i:824 use numpy:0.00737595558167
i:824 use minpy:0.00231313705444
acceleration:3.18872397444
float64 : (825, 825) matmul (825, 825)
i:825 use numpy:0.00613188743591
i:825 use minpy:0.0255889892578
acceleration:0.239629919499
float64 : (826, 826) matmul (826, 826)
i:826 use numpy:0.00594401359558
i:826 use minpy:0.0231380462646
acceleration:0.256893496002
float64 : (827, 827) matmul (827, 827)
i:827 use numpy:0.00585985183716
i:827 use minpy:0.0235011577606
acceleration:0.249343113086
float64 : (828, 828) matmul (828, 828)
i:828 use numpy:0.00589799880981
i:828 use minpy:0.00839996337891
acceleration:0.702145776567
float64 : (829, 829) matmul (829, 829)
i:829 use numpy:0.00629496574402
i:829 use minpy:0.00832200050354
acceleration:0.756424581006
float64 : (830, 830) matmul (830, 830)
i:830 use numpy:0.00619602203369
i:830 use minpy:0.00935316085815
acceleration:0.662452204945
float64 : (831, 831) matmul (831, 831)
i:831 use numpy:0.0116281509399
i:831 use minpy:0.00889086723328
acceleration:1.30787589499
float64 : (832, 832) matmul (832, 832)
i:832 use numpy:0.00676298141479
i:832 use minpy:0.00807094573975
acceleration:0.837941628264
float64 : (833, 833) matmul (833, 833)
i:833 use numpy:0.00934910774231
i:833 use minpy:0.00845408439636
acceleration:1.10586874982
float64 : (834, 834) matmul (834, 834)
i:834 use numpy:0.00739121437073
i:834 use minpy:0.00814509391785
acceleration:0.907443725668
float64 : (835, 835) matmul (835, 835)
i:835 use numpy:0.00889587402344
i:835 use minpy:0.00932097434998
acceleration:0.954393144903
float64 : (836, 836) matmul (836, 836)
i:836 use numpy:0.00629806518555
i:836 use minpy:0.00860214233398
acceleration:0.732150776053
float64 : (837, 837) matmul (837, 837)
i:837 use numpy:0.00638699531555
i:837 use minpy:0.0163509845734
acceleration:0.390618392849
float64 : (838, 838) matmul (838, 838)
i:838 use numpy:0.00750207901001
i:838 use minpy:0.00865697860718
acceleration:0.866593225007
float64 : (839, 839) matmul (839, 839)
i:839 use numpy:0.00826001167297
i:839 use minpy:0.00957608222961
acceleration:0.86256691149
float64 : (840, 840) matmul (840, 840)
i:840 use numpy:0.00645279884338
i:840 use minpy:0.0094039440155
acceleration:0.686180057298
float64 : (841, 841) matmul (841, 841)
i:841 use numpy:0.00684595108032
i:841 use minpy:0.00887894630432
acceleration:0.771031927177
float64 : (842, 842) matmul (842, 842)
i:842 use numpy:0.00642800331116
i:842 use minpy:0.0101940631866
acceleration:0.630563416517
float64 : (843, 843) matmul (843, 843)
i:843 use numpy:0.00726389884949
i:843 use minpy:0.00889301300049
acceleration:0.816809651475
float64 : (844, 844) matmul (844, 844)
i:844 use numpy:0.0112090110779
i:844 use minpy:0.00836110115051
acceleration:1.34061421769
float64 : (845, 845) matmul (845, 845)
i:845 use numpy:0.00977683067322
i:845 use minpy:0.00353598594666
acceleration:2.76495179017
float64 : (846, 846) matmul (846, 846)
i:846 use numpy:0.00736308097839
i:846 use minpy:0.00287508964539
acceleration:2.56099179036
float64 : (847, 847) matmul (847, 847)
i:847 use numpy:0.00666379928589
i:847 use minpy:0.00242209434509
acceleration:2.75125504479
float64 : (848, 848) matmul (848, 848)
i:848 use numpy:0.00591087341309
i:848 use minpy:0.00172996520996
acceleration:3.41675854465
float64 : (849, 849) matmul (849, 849)
i:849 use numpy:0.00765299797058
i:849 use minpy:0.00356197357178
acceleration:2.14852744311
float64 : (850, 850) matmul (850, 850)
i:850 use numpy:0.014762878418
i:850 use minpy:0.00247001647949
acceleration:5.97683397683
float64 : (851, 851) matmul (851, 851)
i:851 use numpy:0.00690507888794
i:851 use minpy:0.0166761875153
acceleration:0.41406819644
float64 : (852, 852) matmul (852, 852)
i:852 use numpy:0.00641918182373
i:852 use minpy:0.0158331394196
acceleration:0.405426975259
float64 : (853, 853) matmul (853, 853)
i:853 use numpy:0.00763511657715
i:853 use minpy:0.0151209831238
acceleration:0.504935195989
float64 : (854, 854) matmul (854, 854)
i:854 use numpy:0.00571703910828
i:854 use minpy:0.02676820755
acceleration:0.213575716551
float64 : (855, 855) matmul (855, 855)
i:855 use numpy:0.0066499710083
i:855 use minpy:0.0288949012756
acceleration:0.230143406439
float64 : (856, 856) matmul (856, 856)
i:856 use numpy:0.0102369785309
i:856 use minpy:0.0176949501038
acceleration:0.578525425099
float64 : (857, 857) matmul (857, 857)
i:857 use numpy:0.00849914550781
i:857 use minpy:0.0191791057587
acceleration:0.44314607859
float64 : (858, 858) matmul (858, 858)
i:858 use numpy:0.0102560520172
i:858 use minpy:0.0188310146332
acceleration:0.544636187534
float64 : (859, 859) matmul (859, 859)
i:859 use numpy:0.0077748298645
i:859 use minpy:0.0195610523224
acceleration:0.397464805899
float64 : (860, 860) matmul (860, 860)
i:860 use numpy:0.00668716430664
i:860 use minpy:0.0193119049072
acceleration:0.346271604938
float64 : (861, 861) matmul (861, 861)
i:861 use numpy:0.00653314590454
i:861 use minpy:0.0193371772766
acceleration:0.337854166153
float64 : (862, 862) matmul (862, 862)
i:862 use numpy:0.00679612159729
i:862 use minpy:0.0138049125671
acceleration:0.492297329971
float64 : (863, 863) matmul (863, 863)
i:863 use numpy:0.00633502006531
i:863 use minpy:0.0199069976807
acceleration:0.318230813452
float64 : (864, 864) matmul (864, 864)
i:864 use numpy:0.00624108314514
i:864 use minpy:0.00248408317566
acceleration:2.51242921586
float64 : (865, 865) matmul (865, 865)
i:865 use numpy:0.00473093986511
i:865 use minpy:0.00164413452148
acceleration:2.87746519722
float64 : (866, 866) matmul (866, 866)
i:866 use numpy:0.00728106498718
i:866 use minpy:0.00439596176147
acceleration:1.65630762556
float64 : (867, 867) matmul (867, 867)
i:867 use numpy:0.00937104225159
i:867 use minpy:0.00179982185364
acceleration:5.2066498874
float64 : (868, 868) matmul (868, 868)
i:868 use numpy:0.00478506088257
i:868 use minpy:0.00379490852356
acceleration:1.26091600176
float64 : (869, 869) matmul (869, 869)
i:869 use numpy:0.00862598419189
i:869 use minpy:0.00439310073853
acceleration:1.96352979486
float64 : (870, 870) matmul (870, 870)
i:870 use numpy:0.00671195983887
i:870 use minpy:0.00458288192749
acceleration:1.46457184476
float64 : (871, 871) matmul (871, 871)
i:871 use numpy:0.00762295722961
i:871 use minpy:0.00298810005188
acceleration:2.55110508258
float64 : (872, 872) matmul (872, 872)
i:872 use numpy:0.00698590278625
i:872 use minpy:0.00253391265869
acceleration:2.75696273993
float64 : (873, 873) matmul (873, 873)
i:873 use numpy:0.00704789161682
i:873 use minpy:0.00393986701965
acceleration:1.78886535552
float64 : (874, 874) matmul (874, 874)
i:874 use numpy:0.00782299041748
i:874 use minpy:0.0163791179657
acceleration:0.477619761569
float64 : (875, 875) matmul (875, 875)
i:875 use numpy:0.00769114494324
i:875 use minpy:0.0195059776306
acceleration:0.394296819615
float64 : (876, 876) matmul (876, 876)
i:876 use numpy:0.00531697273254
i:876 use minpy:0.0188448429108
acceleration:0.282144709708
float64 : (877, 877) matmul (877, 877)
i:877 use numpy:0.00680303573608
i:877 use minpy:0.0207779407501
acceleration:0.327416264099
float64 : (878, 878) matmul (878, 878)
i:878 use numpy:0.00683903694153
i:878 use minpy:0.0178890228271
acceleration:0.382303550485
float64 : (879, 879) matmul (879, 879)
i:879 use numpy:0.00698518753052
i:879 use minpy:0.0183861255646
acceleration:0.379916231181
float64 : (880, 880) matmul (880, 880)
i:880 use numpy:0.00529289245605
i:880 use minpy:0.0159420967102
acceleration:0.332007298178
float64 : (881, 881) matmul (881, 881)
i:881 use numpy:0.00806212425232
i:881 use minpy:0.010183095932
acceleration:0.791716419658
float64 : (882, 882) matmul (882, 882)
i:882 use numpy:0.00716280937195
i:882 use minpy:0.0095591545105
acceleration:0.749314111837
float64 : (883, 883) matmul (883, 883)
i:883 use numpy:0.00694584846497
i:883 use minpy:0.0101659297943
acceleration:0.683247730951
float64 : (884, 884) matmul (884, 884)
i:884 use numpy:0.00747895240784
i:884 use minpy:0.00954794883728
acceleration:0.783304617075
float64 : (885, 885) matmul (885, 885)
i:885 use numpy:0.00893712043762
i:885 use minpy:0.0176129341125
acceleration:0.507418036116
float64 : (886, 886) matmul (886, 886)
i:886 use numpy:0.00766110420227
i:886 use minpy:0.00310802459717
acceleration:2.46494323412
float64 : (887, 887) matmul (887, 887)
i:887 use numpy:0.00808620452881
i:887 use minpy:0.0038890838623
acceleration:2.07920549289
float64 : (888, 888) matmul (888, 888)
i:888 use numpy:0.007169008255
i:888 use minpy:0.00316905975342
acceleration:2.26218778212
float64 : (889, 889) matmul (889, 889)
i:889 use numpy:0.00733208656311
i:889 use minpy:0.00266313552856
acceleration:2.75317815577
float64 : (890, 890) matmul (890, 890)
i:890 use numpy:0.00560092926025
i:890 use minpy:0.00180006027222
acceleration:3.11152317881
float64 : (891, 891) matmul (891, 891)
i:891 use numpy:0.00847315788269
i:891 use minpy:0.0113880634308
acceleration:0.74403852193
float64 : (892, 892) matmul (892, 892)
i:892 use numpy:0.00806307792664
i:892 use minpy:0.00984191894531
acceleration:0.81925872093
float64 : (893, 893) matmul (893, 893)
i:893 use numpy:0.0110309123993
i:893 use minpy:0.0185189247131
acceleration:0.595656204135
float64 : (894, 894) matmul (894, 894)
i:894 use numpy:0.0327417850494
i:894 use minpy:0.012834072113
acceleration:2.5511610626
float64 : (895, 895) matmul (895, 895)
i:895 use numpy:0.0111751556396
i:895 use minpy:0.0042519569397
acceleration:2.6282381967
float64 : (896, 896) matmul (896, 896)
i:896 use numpy:0.0119669437408
i:896 use minpy:0.00335597991943
acceleration:3.56585677749
float64 : (897, 897) matmul (897, 897)
i:897 use numpy:0.0113461017609
i:897 use minpy:0.00270485877991
acceleration:4.19471132658
float64 : (898, 898) matmul (898, 898)
i:898 use numpy:0.00573992729187
i:898 use minpy:0.00213289260864
acceleration:2.69114688129
float64 : (899, 899) matmul (899, 899)
i:899 use numpy:0.00768494606018
i:899 use minpy:0.00397682189941
acceleration:1.93243405276
float64 : (900, 900) matmul (900, 900)
i:900 use numpy:0.00872898101807
i:900 use minpy:0.00270986557007
acceleration:3.22118599331
float64 : (901, 901) matmul (901, 901)
i:901 use numpy:0.00572609901428
i:901 use minpy:0.00182795524597
acceleration:3.13251597757
float64 : (902, 902) matmul (902, 902)
i:902 use numpy:0.00859999656677
i:902 use minpy:0.00402498245239
acceleration:2.13665442483
float64 : (903, 903) matmul (903, 903)
i:903 use numpy:0.00867986679077
i:903 use minpy:0.00281000137329
acceleration:3.08891905651
float64 : (904, 904) matmul (904, 904)
i:904 use numpy:0.0101158618927
i:904 use minpy:0.00198292732239
acceleration:5.10147889864
float64 : (905, 905) matmul (905, 905)
i:905 use numpy:0.0116031169891
i:905 use minpy:0.00415992736816
acceleration:2.78925951398
float64 : (906, 906) matmul (906, 906)
i:906 use numpy:0.0120129585266
i:906 use minpy:0.0028829574585
acceleration:4.16688719815
float64 : (907, 907) matmul (907, 907)
i:907 use numpy:0.00730681419373
i:907 use minpy:0.0017831325531
acceleration:4.09774033962
float64 : (908, 908) matmul (908, 908)
i:908 use numpy:0.0101461410522
i:908 use minpy:0.00407314300537
acceleration:2.49098571763
float64 : (909, 909) matmul (909, 909)
i:909 use numpy:0.0100848674774
i:909 use minpy:0.00276207923889
acceleration:3.65118687959
float64 : (910, 910) matmul (910, 910)
i:910 use numpy:0.00577688217163
i:910 use minpy:0.00220608711243
acceleration:2.61861018048
float64 : (911, 911) matmul (911, 911)
i:911 use numpy:0.00779104232788
i:911 use minpy:0.00413203239441
acceleration:1.88552305118
float64 : (912, 912) matmul (912, 912)
i:912 use numpy:0.00817513465881
i:912 use minpy:0.0177590847015
acceleration:0.460335360533
float64 : (913, 913) matmul (913, 913)
i:913 use numpy:0.00685405731201
i:913 use minpy:0.014720916748
acceleration:0.465599896346
float64 : (914, 914) matmul (914, 914)
i:914 use numpy:0.00794291496277
i:914 use minpy:0.0175750255585
acceleration:0.451943295123
float64 : (915, 915) matmul (915, 915)
i:915 use numpy:0.00753998756409
i:915 use minpy:0.0163190364838
acceleration:0.462036320072
float64 : (916, 916) matmul (916, 916)
i:916 use numpy:0.00798487663269
i:916 use minpy:0.0202720165253
acceleration:0.393886647771
float64 : (917, 917) matmul (917, 917)
i:917 use numpy:0.00596404075623
i:917 use minpy:0.0185370445251
acceleration:0.321736334405
float64 : (918, 918) matmul (918, 918)
i:918 use numpy:0.00911402702332
i:918 use minpy:0.0175001621246
acceleration:0.520796719391
float64 : (919, 919) matmul (919, 919)
i:919 use numpy:0.00975513458252
i:919 use minpy:0.0177869796753
acceleration:0.548442442764
float64 : (920, 920) matmul (920, 920)
i:920 use numpy:0.00762009620667
i:920 use minpy:0.00397396087646
acceleration:1.91750659947
float64 : (921, 921) matmul (921, 921)
i:921 use numpy:0.0100209712982
i:921 use minpy:0.0170269012451
acceleration:0.588537582615
float64 : (922, 922) matmul (922, 922)
i:922 use numpy:0.00871682167053
i:922 use minpy:0.0173010826111
acceleration:0.503830995232
float64 : (923, 923) matmul (923, 923)
i:923 use numpy:0.0076379776001
i:923 use minpy:0.0157539844513
acceleration:0.48482830637
float64 : (924, 924) matmul (924, 924)
i:924 use numpy:0.00874304771423
i:924 use minpy:0.0176610946655
acceleration:0.495045628814
float64 : (925, 925) matmul (925, 925)
i:925 use numpy:0.00911688804626
i:925 use minpy:0.0166749954224
acceleration:0.546740062911
float64 : (926, 926) matmul (926, 926)
i:926 use numpy:0.00706481933594
i:926 use minpy:0.0161380767822
acceleration:0.437773312847
float64 : (927, 927) matmul (927, 927)
i:927 use numpy:0.00902080535889
i:927 use minpy:0.0203380584717
acceleration:0.443543092938
float64 : (928, 928) matmul (928, 928)
i:928 use numpy:0.0119750499725
i:928 use minpy:0.0178959369659
acceleration:0.669149092072
float64 : (929, 929) matmul (929, 929)
i:929 use numpy:0.00885009765625
i:929 use minpy:0.0167558193207
acceleration:0.528180537572
float64 : (930, 930) matmul (930, 930)
i:930 use numpy:0.00929808616638
i:930 use minpy:0.0165359973907
acceleration:0.562293640152
float64 : (931, 931) matmul (931, 931)
i:931 use numpy:0.00832104682922
i:931 use minpy:0.0179541110992
acceleration:0.463461921519
float64 : (932, 932) matmul (932, 932)
i:932 use numpy:0.00731587409973
i:932 use minpy:0.00316214561462
acceleration:2.31357912991
float64 : (933, 933) matmul (933, 933)
i:933 use numpy:0.00819802284241
i:933 use minpy:0.0197100639343
acceleration:0.415930809242
float64 : (934, 934) matmul (934, 934)
i:934 use numpy:0.0111241340637
i:934 use minpy:0.0160450935364
acceleration:0.693304407263
float64 : (935, 935) matmul (935, 935)
i:935 use numpy:0.0125482082367
i:935 use minpy:0.0183591842651
acceleration:0.683483974858
float64 : (936, 936) matmul (936, 936)
i:936 use numpy:0.00841593742371
i:936 use minpy:0.0164248943329
acceleration:0.512389136462
float64 : (937, 937) matmul (937, 937)
i:937 use numpy:0.00847196578979
i:937 use minpy:0.0029308795929
acceleration:2.89058813959
float64 : (938, 938) matmul (938, 938)
i:938 use numpy:0.00770306587219
i:938 use minpy:0.00197291374207
acceleration:3.90441087613
float64 : (939, 939) matmul (939, 939)
i:939 use numpy:0.0115749835968
i:939 use minpy:0.00441408157349
acceleration:2.62228583774
float64 : (940, 940) matmul (940, 940)
i:940 use numpy:0.00922179222107
i:940 use minpy:0.00301003456116
acceleration:3.06368316832
float64 : (941, 941) matmul (941, 941)
i:941 use numpy:0.00649785995483
i:941 use minpy:0.00196194648743
acceleration:3.31194555839
float64 : (942, 942) matmul (942, 942)
i:942 use numpy:0.00877499580383
i:942 use minpy:0.0185580253601
acceleration:0.472841028803
float64 : (943, 943) matmul (943, 943)
i:943 use numpy:0.00932216644287
i:943 use minpy:0.0164840221405
acceleration:0.565527415786
float64 : (944, 944) matmul (944, 944)
i:944 use numpy:0.00721883773804
i:944 use minpy:0.014997959137
acceleration:0.481321336597
float64 : (945, 945) matmul (945, 945)
i:945 use numpy:0.00845503807068
i:945 use minpy:0.0174171924591
acceleration:0.485442076301
float64 : (946, 946) matmul (946, 946)
i:946 use numpy:0.012099981308
i:946 use minpy:0.0195291042328
acceleration:0.619587112842
float64 : (947, 947) matmul (947, 947)
i:947 use numpy:0.0096709728241
i:947 use minpy:0.0164129734039
acceleration:0.58922734998
float64 : (948, 948) matmul (948, 948)
i:948 use numpy:0.0135650634766
i:948 use minpy:0.0181751251221
acceleration:0.746353237486
float64 : (949, 949) matmul (949, 949)
i:949 use numpy:0.00654006004333
i:949 use minpy:0.0160779953003
acceleration:0.406770864227
float64 : (950, 950) matmul (950, 950)
i:950 use numpy:0.00948190689087
i:950 use minpy:0.0181660652161
acceleration:0.521957109484
float64 : (951, 951) matmul (951, 951)
i:951 use numpy:0.00866985321045
i:951 use minpy:0.0170619487762
acceleration:0.50813968112
float64 : (952, 952) matmul (952, 952)
i:952 use numpy:0.00887203216553
i:952 use minpy:0.0170848369598
acceleration:0.519292761551
float64 : (953, 953) matmul (953, 953)
i:953 use numpy:0.00672292709351
i:953 use minpy:0.018266916275
acceleration:0.368038424893
float64 : (954, 954) matmul (954, 954)
i:954 use numpy:0.00835299491882
i:954 use minpy:0.0166540145874
acceleration:0.501560442078
float64 : (955, 955) matmul (955, 955)
i:955 use numpy:0.00888299942017
i:955 use minpy:0.0158598423004
acceleration:0.560093804964
float64 : (956, 956) matmul (956, 956)
i:956 use numpy:0.0100128650665
i:956 use minpy:0.00209903717041
acceleration:4.77021808269
float64 : (957, 957) matmul (957, 957)
i:957 use numpy:0.00864100456238
i:957 use minpy:0.0181970596313
acceleration:0.474857187778
float64 : (958, 958) matmul (958, 958)
i:958 use numpy:0.0102591514587
i:958 use minpy:0.0176050662994
acceleration:0.582738586964
float64 : (959, 959) matmul (959, 959)
i:959 use numpy:0.00854182243347
i:959 use minpy:0.0150179862976
acceleration:0.568772821083
float64 : (960, 960) matmul (960, 960)
i:960 use numpy:0.00855898857117
i:960 use minpy:0.0175240039825
acceleration:0.488415123604
float64 : (961, 961) matmul (961, 961)
i:961 use numpy:0.00827789306641
i:961 use minpy:0.0156750679016
acceleration:0.52809296383
float64 : (962, 962) matmul (962, 962)
i:962 use numpy:0.00634002685547
i:962 use minpy:0.0171329975128
acceleration:0.370047731036
float64 : (963, 963) matmul (963, 963)
i:963 use numpy:0.00822901725769
i:963 use minpy:0.0172619819641
acceleration:0.47671335046
float64 : (964, 964) matmul (964, 964)
i:964 use numpy:0.0082631111145
i:964 use minpy:0.0152609348297
acceleration:0.541455107875
float64 : (965, 965) matmul (965, 965)
i:965 use numpy:0.00742506980896
i:965 use minpy:0.0141911506653
acceleration:0.523218305836
float64 : (966, 966) matmul (966, 966)
i:966 use numpy:0.00947594642639
i:966 use minpy:0.0170860290527
acceleration:0.554602031704
float64 : (967, 967) matmul (967, 967)
i:967 use numpy:0.00936388969421
i:967 use minpy:0.0175499916077
acceleration:0.533555223475
float64 : (968, 968) matmul (968, 968)
i:968 use numpy:0.0106980800629
i:968 use minpy:0.015692949295
acceleration:0.681712523359
float64 : (969, 969) matmul (969, 969)
i:969 use numpy:0.00859904289246
i:969 use minpy:0.00507402420044
acceleration:1.69471854149
float64 : (970, 970) matmul (970, 970)
i:970 use numpy:0.00932693481445
i:970 use minpy:0.00311994552612
acceleration:2.98945437873
float64 : (971, 971) matmul (971, 971)
i:971 use numpy:0.00665402412415
i:971 use minpy:0.00209999084473
acceleration:3.16859673025
float64 : (972, 972) matmul (972, 972)
i:972 use numpy:0.0088210105896
i:972 use minpy:0.00479197502136
acceleration:1.84078809891
float64 : (973, 973) matmul (973, 973)
i:973 use numpy:0.00946688652039
i:973 use minpy:0.00314903259277
acceleration:3.00628407026
float64 : (974, 974) matmul (974, 974)
i:974 use numpy:0.00678491592407
i:974 use minpy:0.00216913223267
acceleration:3.12794020664
float64 : (975, 975) matmul (975, 975)
i:975 use numpy:0.00875902175903
i:975 use minpy:0.00486397743225
acceleration:1.80079407872
float64 : (976, 976) matmul (976, 976)
i:976 use numpy:0.00981688499451
i:976 use minpy:0.00313496589661
acceleration:3.13141683778
float64 : (977, 977) matmul (977, 977)
i:977 use numpy:0.00786519050598
i:977 use minpy:0.00211310386658
acceleration:3.72210312535
float64 : (978, 978) matmul (978, 978)
i:978 use numpy:0.00932884216309
i:978 use minpy:0.0047299861908
acceleration:1.97227682847
float64 : (979, 979) matmul (979, 979)
i:979 use numpy:0.0419631004333
i:979 use minpy:0.0127611160278
acceleration:3.28835662507
float64 : (980, 980) matmul (980, 980)
i:980 use numpy:0.00741410255432
i:980 use minpy:0.0111408233643
acceleration:0.665489642185
float64 : (981, 981) matmul (981, 981)
i:981 use numpy:0.0110759735107
i:981 use minpy:0.0137798786163
acceleration:0.803778742841
float64 : (982, 982) matmul (982, 982)
i:982 use numpy:0.0103170871735
i:982 use minpy:0.0122799873352
acceleration:0.840154545102
float64 : (983, 983) matmul (983, 983)
i:983 use numpy:0.00895404815674
i:983 use minpy:0.019690990448
acceleration:0.454728175324
float64 : (984, 984) matmul (984, 984)
i:984 use numpy:0.00899815559387
i:984 use minpy:0.018807888031
acceleration:0.478424562026
float64 : (985, 985) matmul (985, 985)
i:985 use numpy:0.00985479354858
i:985 use minpy:0.0167529582977
acceleration:0.588241991262
float64 : (986, 986) matmul (986, 986)
i:986 use numpy:0.009850025177
i:986 use minpy:0.0130350589752
acceleration:0.755656356885
float64 : (987, 987) matmul (987, 987)
i:987 use numpy:0.00910496711731
i:987 use minpy:0.0128529071808
acceleration:0.70839748465
float64 : (988, 988) matmul (988, 988)
i:988 use numpy:0.0104892253876
i:988 use minpy:0.0130491256714
acceleration:0.803825915369
float64 : (989, 989) matmul (989, 989)
i:989 use numpy:0.0113980770111
i:989 use minpy:0.0125110149384
acceleration:0.911043353978
float64 : (990, 990) matmul (990, 990)
i:990 use numpy:0.00949501991272
i:990 use minpy:0.0141868591309
acceleration:0.669282737295
float64 : (991, 991) matmul (991, 991)
i:991 use numpy:0.00932288169861
i:991 use minpy:0.0134658813477
acceleration:0.692333569405
float64 : (992, 992) matmul (992, 992)
i:992 use numpy:0.00972485542297
i:992 use minpy:0.0124449729919
acceleration:0.781428407219
float64 : (993, 993) matmul (993, 993)
i:993 use numpy:0.0101919174194
i:993 use minpy:0.0130839347839
acceleration:0.778964247968
float64 : (994, 994) matmul (994, 994)
i:994 use numpy:0.00953912734985
i:994 use minpy:0.0127279758453
acceleration:0.749461459211
float64 : (995, 995) matmul (995, 995)
i:995 use numpy:0.0106139183044
i:995 use minpy:0.0143089294434
acceleration:0.741768861637
float64 : (996, 996) matmul (996, 996)
i:996 use numpy:0.0101919174194
i:996 use minpy:0.0132608413696
acceleration:0.768572455951
float64 : (997, 997) matmul (997, 997)
i:997 use numpy:0.0102410316467
i:997 use minpy:0.0128040313721
acceleration:0.7998286906
float64 : (998, 998) matmul (998, 998)
i:998 use numpy:0.00952100753784
i:998 use minpy:0.0135319232941
acceleration:0.703596032207
float64 : (999, 999) matmul (999, 999)
i:999 use numpy:0.0106639862061
i:999 use minpy:0.0129199028015
acceleration:0.825392138771
float64 : (1000, 1000) matmul (1000, 1000)
i:1000 use numpy:0.0153701305389
i:1000 use minpy:0.00544881820679
acceleration:2.82081911263
float64 : (1001, 1001) matmul (1001, 1001)
i:1001 use numpy:0.0127289295197
i:1001 use minpy:0.0039598941803
acceleration:3.21446203865
float64 : (1002, 1002) matmul (1002, 1002)
i:1002 use numpy:0.0110838413239
i:1002 use minpy:0.00342988967896
acceleration:3.23154455721
float64 : (1003, 1003) matmul (1003, 1003)
i:1003 use numpy:0.00793719291687
i:1003 use minpy:0.00226497650146
acceleration:3.50431578947
float64 : (1004, 1004) matmul (1004, 1004)
i:1004 use numpy:0.0117900371552
i:1004 use minpy:0.00509405136108
acceleration:2.31447159038
float64 : (1005, 1005) matmul (1005, 1005)
i:1005 use numpy:0.0123348236084
i:1005 use minpy:0.00333714485168
acceleration:3.6962206187
float64 : (1006, 1006) matmul (1006, 1006)
i:1006 use numpy:0.00794196128845
i:1006 use minpy:0.00229692459106
acceleration:3.45764998962
float64 : (1007, 1007) matmul (1007, 1007)
i:1007 use numpy:0.0110671520233
i:1007 use minpy:0.00509190559387
acceleration:2.17347942127
float64 : (1008, 1008) matmul (1008, 1008)
i:1008 use numpy:0.00956296920776
i:1008 use minpy:0.00332188606262
acceleration:2.87877700423
float64 : (1009, 1009) matmul (1009, 1009)
i:1009 use numpy:0.00891900062561
i:1009 use minpy:0.00231504440308
acceleration:3.8526261586
float64 : (1010, 1010) matmul (1010, 1010)
i:1010 use numpy:0.0113620758057
i:1010 use minpy:0.00523591041565
acceleration:2.17002868722
float64 : (1011, 1011) matmul (1011, 1011)
i:1011 use numpy:0.0103600025177
i:1011 use minpy:0.00335478782654
acceleration:3.08812451141
float64 : (1012, 1012) matmul (1012, 1012)
i:1012 use numpy:0.00770616531372
i:1012 use minpy:0.00230813026428
acceleration:3.33870467927
float64 : (1013, 1013) matmul (1013, 1013)
i:1013 use numpy:0.0100598335266
i:1013 use minpy:0.00516200065613
acceleration:1.94882453466
float64 : (1014, 1014) matmul (1014, 1014)
i:1014 use numpy:0.0103571414948
i:1014 use minpy:0.00338196754456
acceleration:3.06246034544
float64 : (1015, 1015) matmul (1015, 1015)
i:1015 use numpy:0.00898814201355
i:1015 use minpy:0.00254702568054
acceleration:3.52887765609
float64 : (1016, 1016) matmul (1016, 1016)
i:1016 use numpy:0.0100519657135
i:1016 use minpy:0.00509786605835
acceleration:1.97179870919
float64 : (1017, 1017) matmul (1017, 1017)
i:1017 use numpy:0.0124361515045
i:1017 use minpy:0.00335597991943
acceleration:3.70566922421
float64 : (1018, 1018) matmul (1018, 1018)
i:1018 use numpy:0.00811100006104
i:1018 use minpy:0.0023181438446
acceleration:3.49892008639
float64 : (1019, 1019) matmul (1019, 1019)
i:1019 use numpy:0.0119690895081
i:1019 use minpy:0.00522208213806
acceleration:2.29201479249
float64 : (1020, 1020) matmul (1020, 1020)
i:1020 use numpy:0.0101840496063
i:1020 use minpy:0.00382995605469
acceleration:2.65905129482
float64 : (1021, 1021) matmul (1021, 1021)
i:1021 use numpy:0.0140950679779
i:1021 use minpy:0.00253510475159
acceleration:5.55995485752
float64 : (1022, 1022) matmul (1022, 1022)
i:1022 use numpy:0.0126399993896
i:1022 use minpy:0.00510621070862
acceleration:2.47541672503
float64 : (1023, 1023) matmul (1023, 1023)
i:1023 use numpy:0.0118250846863
i:1023 use minpy:0.00336813926697
acceleration:3.51086571813
float64 : (1024, 1024) matmul (1024, 1024)
i:1024 use numpy:0.00822305679321
i:1024 use minpy:0.00234007835388
acceleration:3.51400916964
float64 : (1025, 1025) matmul (1025, 1025)
i:1025 use numpy:0.011293888092
i:1025 use minpy:0.00528883934021
acceleration:2.13541901456
float64 : (1026, 1026) matmul (1026, 1026)
i:1026 use numpy:0.0105249881744
i:1026 use minpy:0.00333189964294
acceleration:3.15885509839
float64 : (1027, 1027) matmul (1027, 1027)
i:1027 use numpy:0.00996708869934
i:1027 use minpy:0.00236916542053
acceleration:4.20700412599
float64 : (1028, 1028) matmul (1028, 1028)
i:1028 use numpy:0.0103869438171
i:1028 use minpy:0.0055079460144
acceleration:1.88581075232
float64 : (1029, 1029) matmul (1029, 1029)
i:1029 use numpy:0.0106379985809
i:1029 use minpy:0.00323700904846
acceleration:3.28636664948
float64 : (1030, 1030) matmul (1030, 1030)
i:1030 use numpy:0.0101139545441
i:1030 use minpy:0.00232100486755
acceleration:4.35757575758
float64 : (1031, 1031) matmul (1031, 1031)
i:1031 use numpy:0.0105838775635
i:1031 use minpy:0.00622892379761
acceleration:1.69915027176
float64 : (1032, 1032) matmul (1032, 1032)
i:1032 use numpy:0.01145195961
i:1032 use minpy:0.00325012207031
acceleration:3.52354753521
float64 : (1033, 1033) matmul (1033, 1033)
i:1033 use numpy:0.010055065155
i:1033 use minpy:0.00230383872986
acceleration:4.36448307979
float64 : (1034, 1034) matmul (1034, 1034)
i:1034 use numpy:0.0107040405273
i:1034 use minpy:0.00565314292908
acceleration:1.89346716714
float64 : (1035, 1035) matmul (1035, 1035)
i:1035 use numpy:0.0111029148102
i:1035 use minpy:0.00325012207031
acceleration:3.41615316901
float64 : (1036, 1036) matmul (1036, 1036)
i:1036 use numpy:0.00968599319458
i:1036 use minpy:0.00236701965332
acceleration:4.09206285254
float64 : (1037, 1037) matmul (1037, 1037)
i:1037 use numpy:0.0123069286346
i:1037 use minpy:0.00565195083618
acceleration:2.17746562052
float64 : (1038, 1038) matmul (1038, 1038)
i:1038 use numpy:0.0119590759277
i:1038 use minpy:0.00330996513367
acceleration:3.61305193402
float64 : (1039, 1039) matmul (1039, 1039)
i:1039 use numpy:0.00865006446838
i:1039 use minpy:0.00235605239868
acceleration:3.67142278891
float64 : (1040, 1040) matmul (1040, 1040)
i:1040 use numpy:0.0126600265503
i:1040 use minpy:0.00542497634888
acceleration:2.33365562099
float64 : (1041, 1041) matmul (1041, 1041)
i:1041 use numpy:0.0121238231659
i:1041 use minpy:0.00330805778503
acceleration:3.66493693694
float64 : (1042, 1042) matmul (1042, 1042)
i:1042 use numpy:0.0105528831482
i:1042 use minpy:0.00235295295715
acceleration:4.48495288276
float64 : (1043, 1043) matmul (1043, 1043)
i:1043 use numpy:0.0109779834747
i:1043 use minpy:0.00552701950073
acceleration:1.98623932361
float64 : (1044, 1044) matmul (1044, 1044)
i:1044 use numpy:0.0112311840057
i:1044 use minpy:0.00327110290527
acceleration:3.4334548105
float64 : (1045, 1045) matmul (1045, 1045)
i:1045 use numpy:0.0103199481964
i:1045 use minpy:0.0023558139801
acceleration:4.38062949094
float64 : (1046, 1046) matmul (1046, 1046)
i:1046 use numpy:0.011992931366
i:1046 use minpy:0.0053870677948
acceleration:2.22624474441
float64 : (1047, 1047) matmul (1047, 1047)
i:1047 use numpy:0.014955997467
i:1047 use minpy:0.00330185890198
acceleration:4.52956892194
float64 : (1048, 1048) matmul (1048, 1048)
i:1048 use numpy:0.00937795639038
i:1048 use minpy:0.0024619102478
acceleration:3.80921944606
float64 : (1049, 1049) matmul (1049, 1049)
i:1049 use numpy:0.0108721256256
i:1049 use minpy:0.00561714172363
acceleration:1.93552631579
float64 : (1050, 1050) matmul (1050, 1050)
i:1050 use numpy:0.0107080936432
i:1050 use minpy:0.00347399711609
acceleration:3.08235536339
float64 : (1051, 1051) matmul (1051, 1051)
i:1051 use numpy:0.0103409290314
i:1051 use minpy:0.00239896774292
acceleration:4.31057443848
float64 : (1052, 1052) matmul (1052, 1052)
i:1052 use numpy:0.0114648342133
i:1052 use minpy:0.00553107261658
acceleration:2.07280486228
float64 : (1053, 1053) matmul (1053, 1053)
i:1053 use numpy:0.0251529216766
i:1053 use minpy:0.00336503982544
acceleration:7.47477681734
float64 : (1054, 1054) matmul (1054, 1054)
i:1054 use numpy:0.00852799415588
i:1054 use minpy:0.00247383117676
acceleration:3.44728218967
float64 : (1055, 1055) matmul (1055, 1055)
i:1055 use numpy:0.0112581253052
i:1055 use minpy:0.0056529045105
acceleration:1.99156474062
float64 : (1056, 1056) matmul (1056, 1056)
i:1056 use numpy:0.0105299949646
i:1056 use minpy:0.00337791442871
acceleration:3.11730660644
float64 : (1057, 1057) matmul (1057, 1057)
i:1057 use numpy:0.0101408958435
i:1057 use minpy:0.00239205360413
acceleration:4.23940994717
float64 : (1058, 1058) matmul (1058, 1058)
i:1058 use numpy:0.0124151706696
i:1058 use minpy:0.00553607940674
acceleration:2.24259259259
float64 : (1059, 1059) matmul (1059, 1059)
i:1059 use numpy:0.0118360519409
i:1059 use minpy:0.00339603424072
acceleration:3.48525695029
float64 : (1060, 1060) matmul (1060, 1060)
i:1060 use numpy:0.0093719959259
i:1060 use minpy:0.00244402885437
acceleration:3.83465027802
float64 : (1061, 1061) matmul (1061, 1061)
i:1061 use numpy:0.0122931003571
i:1061 use minpy:0.00559616088867
acceleration:2.19670245399
float64 : (1062, 1062) matmul (1062, 1062)
i:1062 use numpy:0.0116968154907
i:1062 use minpy:0.00340509414673
acceleration:3.43509312421
float64 : (1063, 1063) matmul (1063, 1063)
i:1063 use numpy:0.0148630142212
i:1063 use minpy:0.0149989128113
acceleration:0.990939437291
float64 : (1064, 1064) matmul (1064, 1064)
i:1064 use numpy:0.0135350227356
i:1064 use minpy:0.0174219608307
acceleration:0.776894338538
float64 : (1065, 1065) matmul (1065, 1065)
i:1065 use numpy:0.0130398273468
i:1065 use minpy:0.015007019043
acceleration:0.868915226233
float64 : (1066, 1066) matmul (1066, 1066)
i:1066 use numpy:0.0115449428558
i:1066 use minpy:0.0159649848938
acceleration:0.723141483229
float64 : (1067, 1067) matmul (1067, 1067)
i:1067 use numpy:0.0127069950104
i:1067 use minpy:0.0151619911194
acceleration:0.838082209013
float64 : (1068, 1068) matmul (1068, 1068)
i:1068 use numpy:0.0138020515442
i:1068 use minpy:0.0172929763794
acceleration:0.79813048034
float64 : (1069, 1069) matmul (1069, 1069)
i:1069 use numpy:0.0121419429779
i:1069 use minpy:0.0159859657288
acceleration:0.759537658464
float64 : (1070, 1070) matmul (1070, 1070)
i:1070 use numpy:0.011922121048
i:1070 use minpy:0.0153319835663
acceleration:0.77759808419
float64 : (1071, 1071) matmul (1071, 1071)
i:1071 use numpy:0.0121700763702
i:1071 use minpy:0.0161049365997
acceleration:0.755673659122
float64 : (1072, 1072) matmul (1072, 1072)
i:1072 use numpy:0.0119340419769
i:1072 use minpy:0.015026807785
acceleration:0.79418344519
float64 : (1073, 1073) matmul (1073, 1073)
i:1073 use numpy:0.0136590003967
i:1073 use minpy:0.0174491405487
acceleration:0.78278929318
float64 : (1074, 1074) matmul (1074, 1074)
i:1074 use numpy:0.0149869918823
i:1074 use minpy:0.016163110733
acceleration:0.92723437523
float64 : (1075, 1075) matmul (1075, 1075)
i:1075 use numpy:0.0137431621552
i:1075 use minpy:0.0158700942993
acceleration:0.865978607055
float64 : (1076, 1076) matmul (1076, 1076)
i:1076 use numpy:0.0121819972992
i:1076 use minpy:0.016242980957
acceleration:0.749985321747
float64 : (1077, 1077) matmul (1077, 1077)
i:1077 use numpy:0.0116012096405
i:1077 use minpy:0.0155770778656
acceleration:0.744761613224
float64 : (1078, 1078) matmul (1078, 1078)
i:1078 use numpy:0.0120830535889
i:1078 use minpy:0.0177659988403
acceleration:0.680122389822
float64 : (1079, 1079) matmul (1079, 1079)
i:1079 use numpy:0.0121829509735
i:1079 use minpy:0.0164468288422
acceleration:0.740747720453
float64 : (1080, 1080) matmul (1080, 1080)
i:1080 use numpy:0.0314230918884
i:1080 use minpy:0.0161030292511
acceleration:1.9513776817
float64 : (1081, 1081) matmul (1081, 1081)
i:1081 use numpy:0.0117921829224
i:1081 use minpy:0.0164501667023
acceleration:0.716842761279
float64 : (1082, 1082) matmul (1082, 1082)
i:1082 use numpy:0.0141139030457
i:1082 use minpy:0.0157589912415
acceleration:0.895609549457
float64 : (1083, 1083) matmul (1083, 1083)
i:1083 use numpy:0.0129129886627
i:1083 use minpy:0.0180170536041
acceleration:0.716709232622
float64 : (1084, 1084) matmul (1084, 1084)
i:1084 use numpy:0.0125880241394
i:1084 use minpy:0.0165679454803
acceleration:0.759781842253
float64 : (1085, 1085) matmul (1085, 1085)
i:1085 use numpy:0.0122230052948
i:1085 use minpy:0.015928030014
acceleration:0.767389644798
float64 : (1086, 1086) matmul (1086, 1086)
i:1086 use numpy:0.0126149654388
i:1086 use minpy:0.0166318416595
acceleration:0.758482776416
float64 : (1087, 1087) matmul (1087, 1087)
i:1087 use numpy:0.0137281417847
i:1087 use minpy:0.0164308547974
acceleration:0.835509896105
float64 : (1088, 1088) matmul (1088, 1088)
i:1088 use numpy:0.0144619941711
i:1088 use minpy:0.0179641246796
acceleration:0.805048641618
float64 : (1089, 1089) matmul (1089, 1089)
i:1089 use numpy:0.0157868862152
i:1089 use minpy:0.0168538093567
acceleration:0.936695430754
float64 : (1090, 1090) matmul (1090, 1090)
i:1090 use numpy:0.0154249668121
i:1090 use minpy:0.0172441005707
acceleration:0.894506892309
float64 : (1091, 1091) matmul (1091, 1091)
i:1091 use numpy:0.0150351524353
i:1091 use minpy:0.0167651176453
acceleration:0.896811627179
float64 : (1092, 1092) matmul (1092, 1092)
i:1092 use numpy:0.012992143631
i:1092 use minpy:0.0160109996796
acceleration:0.811451120542
float64 : (1093, 1093) matmul (1093, 1093)
i:1093 use numpy:0.0151660442352
i:1093 use minpy:0.0187230110168
acceleration:0.810021647778
float64 : (1094, 1094) matmul (1094, 1094)
i:1094 use numpy:0.0142550468445
i:1094 use minpy:0.0163459777832
acceleration:0.872082847141
float64 : (1095, 1095) matmul (1095, 1095)
i:1095 use numpy:0.0146489143372
i:1095 use minpy:0.017434835434
acceleration:0.840209498544
float64 : (1096, 1096) matmul (1096, 1096)
i:1096 use numpy:0.0147769451141
i:1096 use minpy:0.0176908969879
acceleration:0.835285238743
float64 : (1097, 1097) matmul (1097, 1097)
i:1097 use numpy:0.0146751403809
i:1097 use minpy:0.0190072059631
acceleration:0.772082988385
float64 : (1098, 1098) matmul (1098, 1098)
i:1098 use numpy:0.0133121013641
i:1098 use minpy:0.0191400051117
acceleration:0.695511902241
float64 : (1099, 1099) matmul (1099, 1099)
i:1099 use numpy:0.0294280052185
i:1099 use minpy:0.0170609951019
acceleration:1.72487038667
float64 : (1100, 1100) matmul (1100, 1100)
i:1100 use numpy:0.0107719898224
i:1100 use minpy:0.0160930156708
acceleration:0.669358064564
float64 : (1101, 1101) matmul (1101, 1101)
i:1101 use numpy:0.0239322185516
i:1101 use minpy:0.0195140838623
acceleration:1.22640748705
float64 : (1102, 1102) matmul (1102, 1102)
i:1102 use numpy:0.01509308815
i:1102 use minpy:0.0166158676147
acceleration:0.908353900017
float64 : (1103, 1103) matmul (1103, 1103)
i:1103 use numpy:0.0125799179077
i:1103 use minpy:0.0174970626831
acceleration:0.718973129122
float64 : (1104, 1104) matmul (1104, 1104)
i:1104 use numpy:0.00989603996277
i:1104 use minpy:0.0160830020905
acceleration:0.615310494093
float64 : (1105, 1105) matmul (1105, 1105)
i:1105 use numpy:0.0158979892731
i:1105 use minpy:0.0174908638
acceleration:0.908931054224
float64 : (1106, 1106) matmul (1106, 1106)
i:1106 use numpy:0.0131061077118
i:1106 use minpy:0.0189960002899
acceleration:0.689940382805
float64 : (1107, 1107) matmul (1107, 1107)
i:1107 use numpy:0.0131649971008
i:1107 use minpy:0.0178039073944
acceleration:0.739444258453
float64 : (1108, 1108) matmul (1108, 1108)
i:1108 use numpy:0.0126891136169
i:1108 use minpy:0.0164768695831
acceleration:0.770116772056
float64 : (1109, 1109) matmul (1109, 1109)
i:1109 use numpy:0.0103199481964
i:1109 use minpy:0.0148260593414
acceleration:0.696068183646
float64 : (1110, 1110) matmul (1110, 1110)
i:1110 use numpy:0.0127620697021
i:1110 use minpy:0.0186009407043
acceleration:0.68609807993
float64 : (1111, 1111) matmul (1111, 1111)
i:1111 use numpy:0.012866973877
i:1111 use minpy:0.0176270008087
acceleration:0.729958205402
float64 : (1112, 1112) matmul (1112, 1112)
i:1112 use numpy:0.0127761363983
i:1112 use minpy:0.0165390968323
acceleration:0.772480899524
float64 : (1113, 1113) matmul (1113, 1113)
i:1113 use numpy:0.0148210525513
i:1113 use minpy:0.0192291736603
acceleration:0.770758682256
float64 : (1114, 1114) matmul (1114, 1114)
i:1114 use numpy:0.0599789619446
i:1114 use minpy:0.0196089744568
acceleration:3.05875057754
float64 : (1115, 1115) matmul (1115, 1115)
i:1115 use numpy:0.0130288600922
i:1115 use minpy:0.0184941291809
acceleration:0.704486270465
float64 : (1116, 1116) matmul (1116, 1116)
i:1116 use numpy:0.0132350921631
i:1116 use minpy:0.0197720527649
acceleration:0.669383817678
float64 : (1117, 1117) matmul (1117, 1117)
i:1117 use numpy:0.0132040977478
i:1117 use minpy:0.0185129642487
acceleration:0.713235199423
float64 : (1118, 1118) matmul (1118, 1118)
i:1118 use numpy:0.0383100509644
i:1118 use minpy:0.0272619724274
acceleration:1.40525602344
float64 : (1119, 1119) matmul (1119, 1119)
i:1119 use numpy:0.0109550952911
i:1119 use minpy:0.0372278690338
acceleration:0.294271350347
float64 : (1120, 1120) matmul (1120, 1120)
i:1120 use numpy:0.0138070583344
i:1120 use minpy:0.0373048782349
acceleration:0.370114016924
float64 : (1121, 1121) matmul (1121, 1121)
i:1121 use numpy:0.0134649276733
i:1121 use minpy:0.0459399223328
acceleration:0.293098616402
float64 : (1122, 1122) matmul (1122, 1122)
i:1122 use numpy:0.0133590698242
i:1122 use minpy:0.0288109779358
acceleration:0.463679846411
float64 : (1123, 1123) matmul (1123, 1123)
i:1123 use numpy:0.0133879184723
i:1123 use minpy:0.00477004051208
acceleration:2.80666766632
float64 : (1124, 1124) matmul (1124, 1124)
i:1124 use numpy:0.0138411521912
i:1124 use minpy:0.00625395774841
acceleration:2.21318287522
float64 : (1125, 1125) matmul (1125, 1125)
i:1125 use numpy:0.0243937969208
i:1125 use minpy:0.0207450389862
acceleration:1.17588580754
float64 : (1126, 1126) matmul (1126, 1126)
i:1126 use numpy:0.0135879516602
i:1126 use minpy:0.0149168968201
acceleration:0.910910078957
float64 : (1127, 1127) matmul (1127, 1127)
i:1127 use numpy:0.0109980106354
i:1127 use minpy:0.0138230323792
acceleration:0.79562937666
float64 : (1128, 1128) matmul (1128, 1128)
i:1128 use numpy:0.0136959552765
i:1128 use minpy:0.0057680606842
acceleration:2.37444715414
float64 : (1129, 1129) matmul (1129, 1129)
i:1129 use numpy:0.0506899356842
i:1129 use minpy:0.00644493103027
acceleration:7.86508582421
float64 : (1130, 1130) matmul (1130, 1130)
i:1130 use numpy:0.0209929943085
i:1130 use minpy:0.00486183166504
acceleration:4.31791879168
float64 : (1131, 1131) matmul (1131, 1131)
i:1131 use numpy:0.0224709510803
i:1131 use minpy:0.00630617141724
acceleration:3.56332703214
float64 : (1132, 1132) matmul (1132, 1132)
i:1132 use numpy:0.0137181282043
i:1132 use minpy:0.00529599189758
acceleration:2.59028496826
float64 : (1133, 1133) matmul (1133, 1133)
i:1133 use numpy:0.0137360095978
i:1133 use minpy:0.00387692451477
acceleration:3.54301703462
float64 : (1134, 1134) matmul (1134, 1134)
i:1134 use numpy:0.016126871109
i:1134 use minpy:0.00281190872192
acceleration:5.73520434119
float64 : (1135, 1135) matmul (1135, 1135)
i:1135 use numpy:0.0147819519043
i:1135 use minpy:0.0222239494324
acceleration:0.665136138348
float64 : (1136, 1136) matmul (1136, 1136)
i:1136 use numpy:0.0170450210571
i:1136 use minpy:0.0173330307007
acceleration:0.983383768913
float64 : (1137, 1137) matmul (1137, 1137)
i:1137 use numpy:0.0184419155121
i:1137 use minpy:0.0167949199677
acceleration:1.09806510228
float64 : (1138, 1138) matmul (1138, 1138)
i:1138 use numpy:0.015575170517
i:1138 use minpy:0.0204710960388
acceleration:0.760837157299
float64 : (1139, 1139) matmul (1139, 1139)
i:1139 use numpy:0.0137979984283
i:1139 use minpy:0.0186221599579
acceleration:0.740945113754
float64 : (1140, 1140) matmul (1140, 1140)
i:1140 use numpy:0.0111780166626
i:1140 use minpy:0.0182240009308
acceleration:0.613367871581
float64 : (1141, 1141) matmul (1141, 1141)
i:1141 use numpy:0.0136580467224
i:1141 use minpy:0.0193259716034
acceleration:0.706719796691
float64 : (1142, 1142) matmul (1142, 1142)
i:1142 use numpy:0.0137588977814
i:1142 use minpy:0.0310349464417
acceleration:0.443335638012
float64 : (1143, 1143) matmul (1143, 1143)
i:1143 use numpy:0.0115301609039
i:1143 use minpy:0.0156619548798
acceleration:0.736189127887
float64 : (1144, 1144) matmul (1144, 1144)
i:1144 use numpy:0.0136768817902
i:1144 use minpy:0.0209078788757
acceleration:0.654149656761
float64 : (1145, 1145) matmul (1145, 1145)
i:1145 use numpy:0.0140080451965
i:1145 use minpy:0.00493192672729
acceleration:2.84027844919
float64 : (1146, 1146) matmul (1146, 1146)
i:1146 use numpy:0.0137510299683
i:1146 use minpy:0.00393891334534
acceleration:3.49107196901
float64 : (1147, 1147) matmul (1147, 1147)
i:1147 use numpy:0.0202119350433
i:1147 use minpy:0.00293803215027
acceleration:6.87941248073
float64 : (1148, 1148) matmul (1148, 1148)
i:1148 use numpy:0.043662071228
i:1148 use minpy:0.00665998458862
acceleration:6.5558817212
float64 : (1149, 1149) matmul (1149, 1149)
i:1149 use numpy:0.0149159431458
i:1149 use minpy:0.00392889976501
acceleration:3.7964682323
float64 : (1150, 1150) matmul (1150, 1150)
i:1150 use numpy:0.0164310932159
i:1150 use minpy:0.030709028244
acceleration:0.535057413259
float64 : (1151, 1151) matmul (1151, 1151)
i:1151 use numpy:0.0163512229919
i:1151 use minpy:0.00688409805298
acceleration:2.37521645771
float64 : (1152, 1152) matmul (1152, 1152)
i:1152 use numpy:0.036878824234
i:1152 use minpy:0.0044059753418
acceleration:8.37018398268
float64 : (1153, 1153) matmul (1153, 1153)
i:1153 use numpy:0.0107131004333
i:1153 use minpy:0.00296592712402
acceleration:3.61205787781
float64 : (1154, 1154) matmul (1154, 1154)
i:1154 use numpy:0.0140759944916
i:1154 use minpy:0.00651001930237
acceleration:2.16220472441
float64 : (1155, 1155) matmul (1155, 1155)
i:1155 use numpy:0.0138511657715
i:1155 use minpy:0.0040078163147
acceleration:3.45603807258
float64 : (1156, 1156) matmul (1156, 1156)
i:1156 use numpy:0.0108408927917
i:1156 use minpy:0.00286793708801
acceleration:3.78003159032
float64 : (1157, 1157) matmul (1157, 1157)
i:1157 use numpy:0.0135090351105
i:1157 use minpy:0.00652194023132
acceleration:2.07132151343
float64 : (1158, 1158) matmul (1158, 1158)
i:1158 use numpy:0.0137100219727
i:1158 use minpy:0.0159389972687
acceleration:0.860155864359
float64 : (1159, 1159) matmul (1159, 1159)
i:1159 use numpy:0.0109782218933
i:1159 use minpy:0.0150170326233
acceleration:0.731051344743
float64 : (1160, 1160) matmul (1160, 1160)
i:1160 use numpy:0.0138230323792
i:1160 use minpy:0.0186078548431
acceleration:0.742860071495
float64 : (1161, 1161) matmul (1161, 1161)
i:1161 use numpy:0.0208389759064
i:1161 use minpy:0.0282511711121
acceleration:0.737632285179
float64 : (1162, 1162) matmul (1162, 1162)
i:1162 use numpy:0.0139939785004
i:1162 use minpy:0.0400371551514
acceleration:0.349524796341
float64 : (1163, 1163) matmul (1163, 1163)
i:1163 use numpy:0.0138919353485
i:1163 use minpy:0.0410850048065
acceleration:0.338126657498
float64 : (1164, 1164) matmul (1164, 1164)
i:1164 use numpy:0.0146839618683
i:1164 use minpy:0.0416040420532
acceleration:0.352945558739
float64 : (1165, 1165) matmul (1165, 1165)
i:1165 use numpy:0.0140872001648
i:1165 use minpy:0.0512001514435
acceleration:0.275139814388
float64 : (1166, 1166) matmul (1166, 1166)
i:1166 use numpy:0.0143060684204
i:1166 use minpy:0.0220608711243
acceleration:0.648481573544
float64 : (1167, 1167) matmul (1167, 1167)
i:1167 use numpy:0.0142240524292
i:1167 use minpy:0.00510406494141
acceleration:2.78680866966
float64 : (1168, 1168) matmul (1168, 1168)
i:1168 use numpy:0.0142269134521
i:1168 use minpy:0.00671005249023
acceleration:2.12023877203
float64 : (1169, 1169) matmul (1169, 1169)
i:1169 use numpy:0.0190858840942
i:1169 use minpy:0.0051109790802
acceleration:3.7342911788
float64 : (1170, 1170) matmul (1170, 1170)
i:1170 use numpy:0.0143859386444
i:1170 use minpy:0.00407290458679
acceleration:3.53210794357
float64 : (1171, 1171) matmul (1171, 1171)
i:1171 use numpy:0.011579990387
i:1171 use minpy:0.0031361579895
acceleration:3.69241295423
float64 : (1172, 1172) matmul (1172, 1172)
i:1172 use numpy:0.0143980979919
i:1172 use minpy:0.00682306289673
acceleration:2.11021035712
float64 : (1173, 1173) matmul (1173, 1173)
i:1173 use numpy:0.0142869949341
i:1173 use minpy:0.00410199165344
acceleration:3.48294100552
float64 : (1174, 1174) matmul (1174, 1174)
i:1174 use numpy:0.0116589069366
i:1174 use minpy:0.0029149055481
acceleration:3.9997546213
float64 : (1175, 1175) matmul (1175, 1175)
i:1175 use numpy:0.0145270824432
i:1175 use minpy:0.00682497024536
acceleration:2.1285195277
float64 : (1176, 1176) matmul (1176, 1176)
i:1176 use numpy:0.0223491191864
i:1176 use minpy:0.00445580482483
acceleration:5.01573117877
float64 : (1177, 1177) matmul (1177, 1177)
i:1177 use numpy:0.0119049549103
i:1177 use minpy:0.00293493270874
acceleration:4.05629569456
float64 : (1178, 1178) matmul (1178, 1178)
i:1178 use numpy:0.0147449970245
i:1178 use minpy:0.00682306289673
acceleration:2.16105248445
float64 : (1179, 1179) matmul (1179, 1179)
i:1179 use numpy:0.0147130489349
i:1179 use minpy:0.00411486625671
acceleration:3.5755837534
float64 : (1180, 1180) matmul (1180, 1180)
i:1180 use numpy:0.0119481086731
i:1180 use minpy:0.00305986404419
acceleration:3.90478416706
float64 : (1181, 1181) matmul (1181, 1181)
i:1181 use numpy:0.0148010253906
i:1181 use minpy:0.00700402259827
acceleration:2.11321782347
float64 : (1182, 1182) matmul (1182, 1182)
i:1182 use numpy:0.0148730278015
i:1182 use minpy:0.00425696372986
acceleration:3.49381125735
float64 : (1183, 1183) matmul (1183, 1183)
i:1183 use numpy:0.012148141861
i:1183 use minpy:0.00295805931091
acceleration:4.10679455146
float64 : (1184, 1184) matmul (1184, 1184)
i:1184 use numpy:0.015074968338
i:1184 use minpy:0.00704121589661
acceleration:2.14096095893
float64 : (1185, 1185) matmul (1185, 1185)
i:1185 use numpy:0.0150229930878
i:1185 use minpy:0.00417304039001
acceleration:3.60001142661
float64 : (1186, 1186) matmul (1186, 1186)
i:1186 use numpy:0.0124077796936
i:1186 use minpy:0.00297999382019
acceleration:4.16369309545
float64 : (1187, 1187) matmul (1187, 1187)
i:1187 use numpy:0.0152950286865
i:1187 use minpy:0.00696396827698
acceleration:2.19630935671
float64 : (1188, 1188) matmul (1188, 1188)
i:1188 use numpy:0.0169551372528
i:1188 use minpy:0.0041868686676
acceleration:4.04959854222
float64 : (1189, 1189) matmul (1189, 1189)
i:1189 use numpy:0.0124399662018
i:1189 use minpy:0.00299692153931
acceleration:4.15091487669
float64 : (1190, 1190) matmul (1190, 1190)
i:1190 use numpy:0.0162088871002
i:1190 use minpy:0.00697898864746
acceleration:2.32252664662
float64 : (1191, 1191) matmul (1191, 1191)
i:1191 use numpy:0.0152478218079
i:1191 use minpy:0.0435891151428
acceleration:0.349808014177
float64 : (1192, 1192) matmul (1192, 1192)
i:1192 use numpy:0.0124049186707
i:1192 use minpy:0.0162310600281
acceleration:0.764270395723
float64 : (1193, 1193) matmul (1193, 1193)
i:1193 use numpy:0.0153620243073
i:1193 use minpy:0.0227320194244
acceleration:0.675787928051
float64 : (1194, 1194) matmul (1194, 1194)
i:1194 use numpy:0.0153667926788
i:1194 use minpy:0.0200140476227
acceleration:0.767800345464
float64 : (1195, 1195) matmul (1195, 1195)
i:1195 use numpy:0.0155498981476
i:1195 use minpy:0.0210349559784
acceleration:0.739240821971
float64 : (1196, 1196) matmul (1196, 1196)
i:1196 use numpy:0.0172100067139
i:1196 use minpy:0.0191419124603
acceleration:0.89907456998
float64 : (1197, 1197) matmul (1197, 1197)
i:1197 use numpy:0.0152721405029
i:1197 use minpy:0.0212438106537
acceleration:0.718898353591
float64 : (1198, 1198) matmul (1198, 1198)
i:1198 use numpy:0.0152640342712
i:1198 use minpy:0.0202209949493
acceleration:0.754860693526
float64 : (1199, 1199) matmul (1199, 1199)
i:1199 use numpy:0.0162370204926
i:1199 use minpy:0.0523900985718
acceleration:0.309925366342
float64 : (1200, 1200) matmul (1200, 1200)
i:1200 use numpy:0.0124089717865
i:1200 use minpy:0.0487670898438
acceleration:0.254453809449
float64 : (1201, 1201) matmul (1201, 1201)
i:1201 use numpy:0.015547990799
i:1201 use minpy:0.0519669055939
acceleration:0.299190236965
float64 : (1202, 1202) matmul (1202, 1202)
i:1202 use numpy:0.0155789852142
i:1202 use minpy:0.050192117691
acceleration:0.310387087274
float64 : (1203, 1203) matmul (1203, 1203)
i:1203 use numpy:0.0126230716705
i:1203 use minpy:0.0174179077148
acceleration:0.724718024529
float64 : (1204, 1204) matmul (1204, 1204)
i:1204 use numpy:0.0158081054688
i:1204 use minpy:0.0199391841888
acceleration:0.79281606103
float64 : (1205, 1205) matmul (1205, 1205)
i:1205 use numpy:0.0156149864197
i:1205 use minpy:0.0204789638519
acceleration:0.762489085511
float64 : (1206, 1206) matmul (1206, 1206)
i:1206 use numpy:0.0135951042175
i:1206 use minpy:0.0159211158752
acceleration:0.853903980353
float64 : (1207, 1207) matmul (1207, 1207)
i:1207 use numpy:0.0158758163452
i:1207 use minpy:0.0235459804535
acceleration:0.674247410363
float64 : (1208, 1208) matmul (1208, 1208)
i:1208 use numpy:0.0159249305725
i:1208 use minpy:0.0215389728546
acceleration:0.739354224549
float64 : (1209, 1209) matmul (1209, 1209)
i:1209 use numpy:0.0161089897156
i:1209 use minpy:0.0206429958344
acceleration:0.780361040851
float64 : (1210, 1210) matmul (1210, 1210)
i:1210 use numpy:0.0158529281616
i:1210 use minpy:0.0179741382599
acceleration:0.881985435541
float64 : (1211, 1211) matmul (1211, 1211)
i:1211 use numpy:0.0130620002747
i:1211 use minpy:0.0185530185699
acceleration:0.704036393076
float64 : (1212, 1212) matmul (1212, 1212)
i:1212 use numpy:0.0162110328674
i:1212 use minpy:0.0217990875244
acceleration:0.743656487882
float64 : (1213, 1213) matmul (1213, 1213)
i:1213 use numpy:0.0161769390106
i:1213 use minpy:0.0208389759064
acceleration:0.776282821349
float64 : (1214, 1214) matmul (1214, 1214)
i:1214 use numpy:0.0254211425781
i:1214 use minpy:0.0202260017395
acceleration:1.25685456303
float64 : (1215, 1215) matmul (1215, 1215)
i:1215 use numpy:0.013347864151
i:1215 use minpy:0.0486481189728
acceleration:0.274375750447
float64 : (1216, 1216) matmul (1216, 1216)
i:1216 use numpy:0.0165848731995
i:1216 use minpy:0.0180230140686
acceleration:0.9202053073
float64 : (1217, 1217) matmul (1217, 1217)
i:1217 use numpy:0.0163497924805
i:1217 use minpy:0.01935505867
acceleration:0.844729678127
float64 : (1218, 1218) matmul (1218, 1218)
i:1218 use numpy:0.0133988857269
i:1218 use minpy:0.0169460773468
acceleration:0.790677715717
float64 : (1219, 1219) matmul (1219, 1219)
i:1219 use numpy:0.0164670944214
i:1219 use minpy:0.00730586051941
acceleration:2.25395685801
float64 : (1220, 1220) matmul (1220, 1220)
i:1220 use numpy:0.0163741111755
i:1220 use minpy:0.00453782081604
acceleration:3.60836441969
float64 : (1221, 1221) matmul (1221, 1221)
i:1221 use numpy:0.013561964035
i:1221 use minpy:0.00313401222229
acceleration:4.32734880183
float64 : (1222, 1222) matmul (1222, 1222)
i:1222 use numpy:0.0181019306183
i:1222 use minpy:0.00730013847351
acceleration:2.47966948627
float64 : (1223, 1223) matmul (1223, 1223)
i:1223 use numpy:0.0166349411011
i:1223 use minpy:0.0045599937439
acceleration:3.64801840427
float64 : (1224, 1224) matmul (1224, 1224)
i:1224 use numpy:0.0143299102783
i:1224 use minpy:0.0169241428375
acceleration:0.846714094527
float64 : (1225, 1225) matmul (1225, 1225)
i:1225 use numpy:0.017452955246
i:1225 use minpy:0.0196828842163
acceleration:0.886707204806
float64 : (1226, 1226) matmul (1226, 1226)
i:1226 use numpy:0.0170619487762
i:1226 use minpy:0.0195989608765
acceleration:0.870553744343
float64 : (1227, 1227) matmul (1227, 1227)
i:1227 use numpy:0.0169749259949
i:1227 use minpy:0.0191650390625
acceleration:0.88572352707
float64 : (1228, 1228) matmul (1228, 1228)
i:1228 use numpy:0.0168890953064
i:1228 use minpy:0.019632101059
acceleration:0.860279562319
float64 : (1229, 1229) matmul (1229, 1229)
i:1229 use numpy:0.0137419700623
i:1229 use minpy:0.0174059867859
acceleration:0.789496753691
float64 : (1230, 1230) matmul (1230, 1230)
i:1230 use numpy:0.0170538425446
i:1230 use minpy:0.020280122757
acceleration:0.84091416748
float64 : (1231, 1231) matmul (1231, 1231)
i:1231 use numpy:0.0170319080353
i:1231 use minpy:0.00744295120239
acceleration:2.2883272471
float64 : (1232, 1232) matmul (1232, 1232)
i:1232 use numpy:0.0168581008911
i:1232 use minpy:0.00571489334106
acceleration:2.94985398415
float64 : (1233, 1233) matmul (1233, 1233)
i:1233 use numpy:0.0168180465698
i:1233 use minpy:0.00449705123901
acceleration:3.73979429541
float64 : (1234, 1234) matmul (1234, 1234)
i:1234 use numpy:0.0139021873474
i:1234 use minpy:0.00331997871399
acceleration:4.18743267504
float64 : (1235, 1235) matmul (1235, 1235)
i:1235 use numpy:0.0171661376953
i:1235 use minpy:0.00748610496521
acceleration:2.29306665817
float64 : (1236, 1236) matmul (1236, 1236)
i:1236 use numpy:0.0170419216156
i:1236 use minpy:0.00450396537781
acceleration:3.78375946218
float64 : (1237, 1237) matmul (1237, 1237)
i:1237 use numpy:0.0139751434326
i:1237 use minpy:0.00321507453918
acceleration:4.34675565443
float64 : (1238, 1238) matmul (1238, 1238)
i:1238 use numpy:0.0176830291748
i:1238 use minpy:0.007483959198
acceleration:2.36279069767
float64 : (1239, 1239) matmul (1239, 1239)
i:1239 use numpy:0.0263669490814
i:1239 use minpy:0.00452089309692
acceleration:5.83224343424
float64 : (1240, 1240) matmul (1240, 1240)
i:1240 use numpy:0.0137801170349
i:1240 use minpy:0.00337600708008
acceleration:4.08177966102
float64 : (1241, 1241) matmul (1241, 1241)
i:1241 use numpy:0.016891002655
i:1241 use minpy:0.0075900554657
acceleration:2.22541228208
float64 : (1242, 1242) matmul (1242, 1242)
i:1242 use numpy:0.0167720317841
i:1242 use minpy:0.00456213951111
acceleration:3.67635223413
float64 : (1243, 1243) matmul (1243, 1243)
i:1243 use numpy:0.0138618946075
i:1243 use minpy:0.00325012207031
acceleration:4.26503814554
float64 : (1244, 1244) matmul (1244, 1244)
i:1244 use numpy:0.0169470310211
i:1244 use minpy:0.00770306587219
acceleration:2.20003714135
float64 : (1245, 1245) matmul (1245, 1245)
i:1245 use numpy:0.017333984375
i:1245 use minpy:0.00458288192749
acceleration:3.78233274373
float64 : (1246, 1246) matmul (1246, 1246)
i:1246 use numpy:0.0140569210052
i:1246 use minpy:0.00327515602112
acceleration:4.2919851496
float64 : (1247, 1247) matmul (1247, 1247)
i:1247 use numpy:0.0167970657349
i:1247 use minpy:0.00778293609619
acceleration:2.15819139811
float64 : (1248, 1248) matmul (1248, 1248)
i:1248 use numpy:0.0166211128235
i:1248 use minpy:0.00459814071655
acceleration:3.6147464482
float64 : (1249, 1249) matmul (1249, 1249)
i:1249 use numpy:0.013710975647
i:1249 use minpy:0.00349187850952
acceleration:3.92653284173
float64 : (1250, 1250) matmul (1250, 1250)
i:1250 use numpy:0.0168390274048
i:1250 use minpy:0.00760102272034
acceleration:2.21536338258
float64 : (1251, 1251) matmul (1251, 1251)
i:1251 use numpy:0.0260510444641
i:1251 use minpy:0.00490307807922
acceleration:5.3132020423
float64 : (1252, 1252) matmul (1252, 1252)
i:1252 use numpy:0.0137259960175
i:1252 use minpy:0.00327301025391
acceleration:4.19369172494
float64 : (1253, 1253) matmul (1253, 1253)
i:1253 use numpy:0.0181019306183
i:1253 use minpy:0.00800108909607
acceleration:2.26243332638
float64 : (1254, 1254) matmul (1254, 1254)
i:1254 use numpy:0.0169560909271
i:1254 use minpy:0.00463795661926
acceleration:3.65593995785
float64 : (1255, 1255) matmul (1255, 1255)
i:1255 use numpy:0.0140469074249
i:1255 use minpy:0.00331902503967
acceleration:4.23223906329
float64 : (1256, 1256) matmul (1256, 1256)
i:1256 use numpy:0.0175681114197
i:1256 use minpy:0.00815391540527
acceleration:2.15456140351
float64 : (1257, 1257) matmul (1257, 1257)
i:1257 use numpy:0.0176048278809
i:1257 use minpy:0.0047619342804
acceleration:3.69699093777
float64 : (1258, 1258) matmul (1258, 1258)
i:1258 use numpy:0.0143709182739
i:1258 use minpy:0.00332903862
acceleration:4.31683735587
float64 : (1259, 1259) matmul (1259, 1259)
i:1259 use numpy:0.0175819396973
i:1259 use minpy:0.00782108306885
acceleration:2.24801853433
float64 : (1260, 1260) matmul (1260, 1260)
i:1260 use numpy:0.0176901817322
i:1260 use minpy:0.00469303131104
acceleration:3.76945742735
float64 : (1261, 1261) matmul (1261, 1261)
i:1261 use numpy:0.0143899917603
i:1261 use minpy:0.00348401069641
acceleration:4.13029494286
float64 : (1262, 1262) matmul (1262, 1262)
i:1262 use numpy:0.0180139541626
i:1262 use minpy:0.00785493850708
acceleration:2.2933284769
float64 : (1263, 1263) matmul (1263, 1263)
i:1263 use numpy:0.0176391601562
i:1263 use minpy:0.00470113754272
acceleration:3.75210467593
float64 : (1264, 1264) matmul (1264, 1264)
i:1264 use numpy:0.0144958496094
i:1264 use minpy:0.00341296195984
acceleration:4.24729304925
float64 : (1265, 1265) matmul (1265, 1265)
i:1265 use numpy:0.0276818275452
i:1265 use minpy:0.00821089744568
acceleration:3.371352246
float64 : (1266, 1266) matmul (1266, 1266)
i:1266 use numpy:0.0176291465759
i:1266 use minpy:0.00471782684326
acceleration:3.73670911664
float64 : (1267, 1267) matmul (1267, 1267)
i:1267 use numpy:0.0151491165161
i:1267 use minpy:0.00337600708008
acceleration:4.48728813559
float64 : (1268, 1268) matmul (1268, 1268)
i:1268 use numpy:0.0179731845856
i:1268 use minpy:0.00792717933655
acceleration:2.26728623417
float64 : (1269, 1269) matmul (1269, 1269)
i:1269 use numpy:0.0181229114532
i:1269 use minpy:0.0047709941864
acceleration:3.79856079156
float64 : (1270, 1270) matmul (1270, 1270)
i:1270 use numpy:0.0147390365601
i:1270 use minpy:0.00340485572815
acceleration:4.32882851341
float64 : (1271, 1271) matmul (1271, 1271)
i:1271 use numpy:0.0182011127472
i:1271 use minpy:0.00799417495728
acceleration:2.2767968983
float64 : (1272, 1272) matmul (1272, 1272)
i:1272 use numpy:0.0179779529572
i:1272 use minpy:0.00475001335144
acceleration:3.78482156302
float64 : (1273, 1273) matmul (1273, 1273)
i:1273 use numpy:0.0478391647339
i:1273 use minpy:0.0187931060791
acceleration:2.54556987719
float64 : (1274, 1274) matmul (1274, 1274)
i:1274 use numpy:0.0182800292969
i:1274 use minpy:0.021185874939
acceleration:0.862840423138
float64 : (1275, 1275) matmul (1275, 1275)
i:1275 use numpy:0.0186660289764
i:1275 use minpy:0.02024102211
acceleration:0.922188063182
float64 : (1276, 1276) matmul (1276, 1276)
i:1276 use numpy:0.0185389518738
i:1276 use minpy:0.0206918716431
acceleration:0.895953357607
float64 : (1277, 1277) matmul (1277, 1277)
i:1277 use numpy:0.0185859203339
i:1277 use minpy:0.0195460319519
acceleration:0.950879461345
float64 : (1278, 1278) matmul (1278, 1278)
i:1278 use numpy:0.0154631137848
i:1278 use minpy:0.0190658569336
acceleration:0.811036914766
float64 : (1279, 1279) matmul (1279, 1279)
i:1279 use numpy:0.0186231136322
i:1279 use minpy:0.023824930191
acceleration:0.781664982137
float64 : (1280, 1280) matmul (1280, 1280)
i:1280 use numpy:0.0185542106628
i:1280 use minpy:0.00482797622681
acceleration:3.8430617284
float64 : (1281, 1281) matmul (1281, 1281)
i:1281 use numpy:0.0180060863495
i:1281 use minpy:0.00344395637512
acceleration:5.2283142956
float64 : (1282, 1282) matmul (1282, 1282)
i:1282 use numpy:0.0189518928528
i:1282 use minpy:0.00796294212341
acceleration:2.38001137759
float64 : (1283, 1283) matmul (1283, 1283)
i:1283 use numpy:0.0190072059631
i:1283 use minpy:0.00478601455688
acceleration:3.97140579855
float64 : (1284, 1284) matmul (1284, 1284)
i:1284 use numpy:0.0163359642029
i:1284 use minpy:0.0034339427948
acceleration:4.75720336041
float64 : (1285, 1285) matmul (1285, 1285)
i:1285 use numpy:0.0192289352417
i:1285 use minpy:0.00824880599976
acceleration:2.33111740563
float64 : (1286, 1286) matmul (1286, 1286)
i:1286 use numpy:0.0201709270477
i:1286 use minpy:0.00504612922668
acceleration:3.99730687456
float64 : (1287, 1287) matmul (1287, 1287)
i:1287 use numpy:0.0267188549042
i:1287 use minpy:0.0038800239563
acceleration:6.88626029249
float64 : (1288, 1288) matmul (1288, 1288)
i:1288 use numpy:0.0194039344788
i:1288 use minpy:0.00827097892761
acceleration:2.34602634689
float64 : (1289, 1289) matmul (1289, 1289)
i:1289 use numpy:0.0189950466156
i:1289 use minpy:0.00485396385193
acceleration:3.91330615453
float64 : (1290, 1290) matmul (1290, 1290)
i:1290 use numpy:0.0265350341797
i:1290 use minpy:0.0195319652557
acceleration:1.35854399863
float64 : (1291, 1291) matmul (1291, 1291)
i:1291 use numpy:0.0195119380951
i:1291 use minpy:0.00828099250793
acceleration:2.35623182564
float64 : (1292, 1292) matmul (1292, 1292)
i:1292 use numpy:0.0202629566193
i:1292 use minpy:0.00488090515137
acceleration:4.15147518562
float64 : (1293, 1293) matmul (1293, 1293)
i:1293 use numpy:0.0190529823303
i:1293 use minpy:0.00345015525818
acceleration:5.52235505494
float64 : (1294, 1294) matmul (1294, 1294)
i:1294 use numpy:0.0193359851837
i:1294 use minpy:0.00815200805664
acceleration:2.37192910622
float64 : (1295, 1295) matmul (1295, 1295)
i:1295 use numpy:0.0200388431549
i:1295 use minpy:0.0056939125061
acceleration:3.51934511347
float64 : (1296, 1296) matmul (1296, 1296)
i:1296 use numpy:0.0171239376068
i:1296 use minpy:0.00359392166138
acceleration:4.7646941754
float64 : (1297, 1297) matmul (1297, 1297)
i:1297 use numpy:0.0194549560547
i:1297 use minpy:0.00823402404785
acceleration:2.36275191105
float64 : (1298, 1298) matmul (1298, 1298)
i:1298 use numpy:0.0199151039124
i:1298 use minpy:0.00497698783875
acceleration:4.00143712575
float64 : (1299, 1299) matmul (1299, 1299)
i:1299 use numpy:0.0161681175232
i:1299 use minpy:0.00347805023193
acceleration:4.64861530025
float64 : (1300, 1300) matmul (1300, 1300)
i:1300 use numpy:0.0208961963654
i:1300 use minpy:0.00830411911011
acceleration:2.51636520241
float64 : (1301, 1301) matmul (1301, 1301)
i:1301 use numpy:0.0195739269257
i:1301 use minpy:0.00501799583435
acceleration:3.90074594954
float64 : (1302, 1302) matmul (1302, 1302)
i:1302 use numpy:0.0162320137024
i:1302 use minpy:0.00352597236633
acceleration:4.60355669755
float64 : (1303, 1303) matmul (1303, 1303)
i:1303 use numpy:0.0467939376831
i:1303 use minpy:0.0084171295166
acceleration:5.55937004305
float64 : (1304, 1304) matmul (1304, 1304)
i:1304 use numpy:0.0767109394073
i:1304 use minpy:0.00501203536987
acceleration:15.3053467796
float64 : (1305, 1305) matmul (1305, 1305)
i:1305 use numpy:0.0459017753601
i:1305 use minpy:0.00478506088257
acceleration:9.59272546089
float64 : (1306, 1306) matmul (1306, 1306)
i:1306 use numpy:0.0856168270111
i:1306 use minpy:0.027379989624
acceleration:3.12698537095
float64 : (1307, 1307) matmul (1307, 1307)
i:1307 use numpy:0.0197520256042
i:1307 use minpy:0.00498080253601
acceleration:3.96563113302
float64 : (1308, 1308) matmul (1308, 1308)
i:1308 use numpy:0.0167198181152
i:1308 use minpy:0.00352501869202
acceleration:4.74318566114
float64 : (1309, 1309) matmul (1309, 1309)
i:1309 use numpy:0.0502288341522
i:1309 use minpy:0.00851106643677
acceleration:5.90159112555
float64 : (1310, 1310) matmul (1310, 1310)
i:1310 use numpy:0.0218169689178
i:1310 use minpy:0.0490469932556
acceleration:0.444817663014
float64 : (1311, 1311) matmul (1311, 1311)
i:1311 use numpy:0.0167701244354
i:1311 use minpy:0.0479001998901
acceleration:0.350105520935
float64 : (1312, 1312) matmul (1312, 1312)
i:1312 use numpy:0.0213649272919
i:1312 use minpy:0.0244190692902
acceleration:0.874927993283
float64 : (1313, 1313) matmul (1313, 1313)
i:1313 use numpy:0.0246329307556
i:1313 use minpy:0.00577902793884
acceleration:4.26246957383
float64 : (1314, 1314) matmul (1314, 1314)
i:1314 use numpy:0.0183839797974
i:1314 use minpy:0.00368022918701
acceleration:4.99533557917
float64 : (1315, 1315) matmul (1315, 1315)
i:1315 use numpy:0.0208098888397
i:1315 use minpy:0.00852489471436
acceleration:2.44107282694
float64 : (1316, 1316) matmul (1316, 1316)
i:1316 use numpy:0.0218641757965
i:1316 use minpy:0.00510787963867
acceleration:4.2804798357
float64 : (1317, 1317) matmul (1317, 1317)
i:1317 use numpy:0.025869846344
i:1317 use minpy:0.0038058757782
acceleration:6.79734385767
float64 : (1318, 1318) matmul (1318, 1318)
i:1318 use numpy:0.0297679901123
i:1318 use minpy:0.00854086875916
acceleration:3.48535856852
float64 : (1319, 1319) matmul (1319, 1319)
i:1319 use numpy:0.0209939479828
i:1319 use minpy:0.00528693199158
acceleration:3.97091319053
float64 : (1320, 1320) matmul (1320, 1320)
i:1320 use numpy:0.0173380374908
i:1320 use minpy:0.00372195243835
acceleration:4.6583178528
float64 : (1321, 1321) matmul (1321, 1321)
i:1321 use numpy:0.0210309028625
i:1321 use minpy:0.00857496261597
acceleration:2.45259411667
float64 : (1322, 1322) matmul (1322, 1322)
i:1322 use numpy:0.02570104599
i:1322 use minpy:0.00508308410645
acceleration:5.05619136961
float64 : (1323, 1323) matmul (1323, 1323)
i:1323 use numpy:0.022027015686
i:1323 use minpy:0.00369596481323
acceleration:5.9597471294
float64 : (1324, 1324) matmul (1324, 1324)
i:1324 use numpy:0.0212559700012
i:1324 use minpy:0.0219850540161
acceleration:0.966837287989
float64 : (1325, 1325) matmul (1325, 1325)
i:1325 use numpy:0.021155834198
i:1325 use minpy:0.00520610809326
acceleration:4.06365634732
float64 : (1326, 1326) matmul (1326, 1326)
i:1326 use numpy:0.0177180767059
i:1326 use minpy:0.00378894805908
acceleration:4.67625220237
float64 : (1327, 1327) matmul (1327, 1327)
i:1327 use numpy:0.0214509963989
i:1327 use minpy:0.00868988037109
acceleration:2.46850307287
float64 : (1328, 1328) matmul (1328, 1328)
i:1328 use numpy:0.0211470127106
i:1328 use minpy:0.00519680976868
acceleration:4.06922971051
float64 : (1329, 1329) matmul (1329, 1329)
i:1329 use numpy:0.0180580615997
i:1329 use minpy:0.00373601913452
acceleration:4.83350350989
float64 : (1330, 1330) matmul (1330, 1330)
i:1330 use numpy:0.0264828205109
i:1330 use minpy:0.00867199897766
acceleration:3.05383113848
float64 : (1331, 1331) matmul (1331, 1331)
i:1331 use numpy:0.0209290981293
i:1331 use minpy:0.00526189804077
acceleration:3.97748074309
float64 : (1332, 1332) matmul (1332, 1332)
i:1332 use numpy:0.0173561573029
i:1332 use minpy:0.00372290611267
acceleration:4.66199167467
float64 : (1333, 1333) matmul (1333, 1333)
i:1333 use numpy:0.0210700035095
i:1333 use minpy:0.00878000259399
acceleration:2.39977190029
float64 : (1334, 1334) matmul (1334, 1334)
i:1334 use numpy:0.0207509994507
i:1334 use minpy:0.00518703460693
acceleration:4.00055157198
float64 : (1335, 1335) matmul (1335, 1335)
i:1335 use numpy:0.0174551010132
i:1335 use minpy:0.00373816490173
acceleration:4.66943044837
float64 : (1336, 1336) matmul (1336, 1336)
i:1336 use numpy:0.0214788913727
i:1336 use minpy:0.00883984565735
acceleration:2.42978126601
float64 : (1337, 1337) matmul (1337, 1337)
i:1337 use numpy:0.021192073822
i:1337 use minpy:0.00521183013916
acceleration:4.06614821592
float64 : (1338, 1338) matmul (1338, 1338)
i:1338 use numpy:0.0170700550079
i:1338 use minpy:0.00376605987549
acceleration:4.53260319068
float64 : (1339, 1339) matmul (1339, 1339)
i:1339 use numpy:0.0206568241119
i:1339 use minpy:0.00882005691528
acceleration:2.34202843704
float64 : (1340, 1340) matmul (1340, 1340)
i:1340 use numpy:0.0205709934235
i:1340 use minpy:0.00525498390198
acceleration:3.91456830452
float64 : (1341, 1341) matmul (1341, 1341)
i:1341 use numpy:0.0193409919739
i:1341 use minpy:0.00375914573669
acceleration:5.14504978753
float64 : (1342, 1342) matmul (1342, 1342)
i:1342 use numpy:0.0239250659943
i:1342 use minpy:0.00898098945618
acceleration:2.66396771881
float64 : (1343, 1343) matmul (1343, 1343)
i:1343 use numpy:0.0206751823425
i:1343 use minpy:0.00542521476746
acceleration:3.81094264997
float64 : (1344, 1344) matmul (1344, 1344)
i:1344 use numpy:0.0193121433258
i:1344 use minpy:0.00402021408081
acceleration:4.80375993358
float64 : (1345, 1345) matmul (1345, 1345)
i:1345 use numpy:0.0211589336395
i:1345 use minpy:0.00905609130859
acceleration:2.3364311289
float64 : (1346, 1346) matmul (1346, 1346)
i:1346 use numpy:0.0204629898071
i:1346 use minpy:0.00529193878174
acceleration:3.86682285096
float64 : (1347, 1347) matmul (1347, 1347)
i:1347 use numpy:0.0171298980713
i:1347 use minpy:0.00384092330933
acceleration:4.45983860956
float64 : (1348, 1348) matmul (1348, 1348)
i:1348 use numpy:0.0210468769073
i:1348 use minpy:0.00892090797424
acceleration:2.35927519577
float64 : (1349, 1349) matmul (1349, 1349)
i:1349 use numpy:0.0216979980469
i:1349 use minpy:0.00542616844177
acceleration:3.99876971747
float64 : (1350, 1350) matmul (1350, 1350)
i:1350 use numpy:0.017657995224
i:1350 use minpy:0.00386714935303
acceleration:4.56615289766
float64 : (1351, 1351) matmul (1351, 1351)
i:1351 use numpy:0.024206161499
i:1351 use minpy:0.00914597511292
acceleration:2.64664633352
float64 : (1352, 1352) matmul (1352, 1352)
i:1352 use numpy:0.0220251083374
i:1352 use minpy:0.0053379535675
acceleration:4.12613336907
float64 : (1353, 1353) matmul (1353, 1353)
i:1353 use numpy:0.0174570083618
i:1353 use minpy:0.00386691093445
acceleration:4.51445835132
float64 : (1354, 1354) matmul (1354, 1354)
i:1354 use numpy:0.0215389728546
i:1354 use minpy:0.00893998146057
acceleration:2.40928607622
float64 : (1355, 1355) matmul (1355, 1355)
i:1355 use numpy:0.0210740566254
i:1355 use minpy:0.00540804862976
acceleration:3.89679495658
float64 : (1356, 1356) matmul (1356, 1356)
i:1356 use numpy:0.0186200141907
i:1356 use minpy:0.00390100479126
acceleration:4.77313286884
float64 : (1357, 1357) matmul (1357, 1357)
i:1357 use numpy:0.0217649936676
i:1357 use minpy:0.00914788246155
acceleration:2.37923844771
float64 : (1358, 1358) matmul (1358, 1358)
i:1358 use numpy:0.0288510322571
i:1358 use minpy:0.00585293769836
acceleration:4.92932502342
float64 : (1359, 1359) matmul (1359, 1359)
i:1359 use numpy:0.0207550525665
i:1359 use minpy:0.00390195846558
acceleration:5.31913723573
float64 : (1360, 1360) matmul (1360, 1360)
i:1360 use numpy:0.0220940113068
i:1360 use minpy:0.00915312767029
acceleration:2.41382094762
float64 : (1361, 1361) matmul (1361, 1361)
i:1361 use numpy:0.031986951828
i:1361 use minpy:0.00600290298462
acceleration:5.32858050679
float64 : (1362, 1362) matmul (1362, 1362)
i:1362 use numpy:0.021388053894
i:1362 use minpy:0.00394701957703
acceleration:5.4187858653
float64 : (1363, 1363) matmul (1363, 1363)
i:1363 use numpy:0.0225911140442
i:1363 use minpy:0.00924777984619
acceleration:2.44286892853
float64 : (1364, 1364) matmul (1364, 1364)
i:1364 use numpy:0.0350630283356
i:1364 use minpy:0.00605607032776
acceleration:5.78973268769
float64 : (1365, 1365) matmul (1365, 1365)
i:1365 use numpy:0.0192089080811
i:1365 use minpy:0.00395202636719
acceleration:4.86052123552
float64 : (1366, 1366) matmul (1366, 1366)
i:1366 use numpy:0.0402309894562
i:1366 use minpy:0.00921106338501
acceleration:4.36768131697
float64 : (1367, 1367) matmul (1367, 1367)
i:1367 use numpy:0.0269770622253
i:1367 use minpy:0.0066192150116
acceleration:4.07556820228
float64 : (1368, 1368) matmul (1368, 1368)
i:1368 use numpy:0.0219910144806
i:1368 use minpy:0.00403785705566
acceleration:5.44620925838
float64 : (1369, 1369) matmul (1369, 1369)
i:1369 use numpy:0.0230150222778
i:1369 use minpy:0.00930094718933
acceleration:2.47448155648
float64 : (1370, 1370) matmul (1370, 1370)
i:1370 use numpy:0.0223388671875
i:1370 use minpy:0.00555992126465
acceleration:4.01783876501
float64 : (1371, 1371) matmul (1371, 1371)
i:1371 use numpy:0.0193529129028
i:1371 use minpy:0.00426983833313
acceleration:4.53246970797
float64 : (1372, 1372) matmul (1372, 1372)
i:1372 use numpy:0.0235619544983
i:1372 use minpy:0.00934600830078
acceleration:2.52107142857
float64 : (1373, 1373) matmul (1373, 1373)
i:1373 use numpy:0.0226221084595
i:1373 use minpy:0.00554704666138
acceleration:4.07822573713
float64 : (1374, 1374) matmul (1374, 1374)
i:1374 use numpy:0.0194489955902
i:1374 use minpy:0.00408291816711
acceleration:4.76350364964
float64 : (1375, 1375) matmul (1375, 1375)
i:1375 use numpy:0.0227711200714
i:1375 use minpy:0.00926303863525
acceleration:2.45827756615
float64 : (1376, 1376) matmul (1376, 1376)
i:1376 use numpy:0.0248589515686
i:1376 use minpy:0.00559496879578
acceleration:4.44309029701
float64 : (1377, 1377) matmul (1377, 1377)
i:1377 use numpy:0.0189411640167
i:1377 use minpy:0.00397896766663
acceleration:4.76032116963
float64 : (1378, 1378) matmul (1378, 1378)
i:1378 use numpy:0.0283100605011
i:1378 use minpy:0.00955820083618
acceleration:2.96186081317
float64 : (1379, 1379) matmul (1379, 1379)
i:1379 use numpy:0.0261750221252
i:1379 use minpy:0.00662899017334
acceleration:3.94856855129
float64 : (1380, 1380) matmul (1380, 1380)
i:1380 use numpy:0.0193610191345
i:1380 use minpy:0.00400900840759
acceleration:4.82937853107
float64 : (1381, 1381) matmul (1381, 1381)
i:1381 use numpy:0.0239520072937
i:1381 use minpy:0.00937795639038
acceleration:2.55407535466
float64 : (1382, 1382) matmul (1382, 1382)
i:1382 use numpy:0.0305960178375
i:1382 use minpy:0.00593709945679
acceleration:5.15336117581
float64 : (1383, 1383) matmul (1383, 1383)
i:1383 use numpy:0.0194971561432
i:1383 use minpy:0.00406098365784
acceleration:4.80109199789
float64 : (1384, 1384) matmul (1384, 1384)
i:1384 use numpy:0.0229170322418
i:1384 use minpy:0.00940799713135
acceleration:2.43590978206
float64 : (1385, 1385) matmul (1385, 1385)
i:1385 use numpy:0.0260121822357
i:1385 use minpy:0.00555014610291
acceleration:4.68675630396
float64 : (1386, 1386) matmul (1386, 1386)
i:1386 use numpy:0.0197491645813
i:1386 use minpy:0.00404000282288
acceleration:4.8884036589
float64 : (1387, 1387) matmul (1387, 1387)
i:1387 use numpy:0.0232698917389
i:1387 use minpy:0.00940704345703
acceleration:2.47366686942
float64 : (1388, 1388) matmul (1388, 1388)
i:1388 use numpy:0.0273280143738
i:1388 use minpy:0.00573778152466
acceleration:4.76281891465
float64 : (1389, 1389) matmul (1389, 1389)
i:1389 use numpy:0.0194659233093
i:1389 use minpy:0.00401091575623
acceleration:4.85323664031
float64 : (1390, 1390) matmul (1390, 1390)
i:1390 use numpy:0.0235471725464
i:1390 use minpy:0.00944018363953
acceleration:2.4943553479
float64 : (1391, 1391) matmul (1391, 1391)
i:1391 use numpy:0.0227589607239
i:1391 use minpy:0.00618600845337
acceleration:3.67910275187
float64 : (1392, 1392) matmul (1392, 1392)
i:1392 use numpy:0.0189809799194
i:1392 use minpy:0.00407099723816
acceleration:4.66248901903
float64 : (1393, 1393) matmul (1393, 1393)
i:1393 use numpy:0.0255138874054
i:1393 use minpy:0.00948786735535
acceleration:2.68910667169
float64 : (1394, 1394) matmul (1394, 1394)
i:1394 use numpy:0.0246520042419
i:1394 use minpy:0.00569796562195
acceleration:4.32645717394
float64 : (1395, 1395) matmul (1395, 1395)
i:1395 use numpy:0.0193200111389
i:1395 use minpy:0.00407099723816
acceleration:4.74576866764
float64 : (1396, 1396) matmul (1396, 1396)
i:1396 use numpy:0.0304520130157
i:1396 use minpy:0.00950503349304
acceleration:3.20377756039
float64 : (1397, 1397) matmul (1397, 1397)
i:1397 use numpy:0.0233590602875
i:1397 use minpy:0.00572609901428
acceleration:4.07940209019
float64 : (1398, 1398) matmul (1398, 1398)
i:1398 use numpy:0.0233149528503
i:1398 use minpy:0.00415301322937
acceleration:5.61398472932
float64 : (1399, 1399) matmul (1399, 1399)
i:1399 use numpy:0.0237560272217
i:1399 use minpy:0.00958299636841
acceleration:2.47897696174
float64 : (1400, 1400) matmul (1400, 1400)
i:1400 use numpy:0.0235919952393
i:1400 use minpy:0.00568604469299
acceleration:4.14910478427
float64 : (1401, 1401) matmul (1401, 1401)
i:1401 use numpy:0.0206680297852
i:1401 use minpy:0.00414800643921
acceleration:4.98264168295
float64 : (1402, 1402) matmul (1402, 1402)
i:1402 use numpy:0.0239360332489
i:1402 use minpy:0.00970697402954
acceleration:2.46585940954
float64 : (1403, 1403) matmul (1403, 1403)
i:1403 use numpy:0.0235788822174
i:1403 use minpy:0.00571489334106
acceleration:4.12586566542
float64 : (1404, 1404) matmul (1404, 1404)
i:1404 use numpy:0.020229101181
i:1404 use minpy:0.00411105155945
acceleration:4.92066345763
float64 : (1405, 1405) matmul (1405, 1405)
i:1405 use numpy:0.0245621204376
i:1405 use minpy:0.0096640586853
acceleration:2.54159471061
float64 : (1406, 1406) matmul (1406, 1406)
i:1406 use numpy:0.0244719982147
i:1406 use minpy:0.00644588470459
acceleration:3.79653055186
float64 : (1407, 1407) matmul (1407, 1407)
i:1407 use numpy:0.0207278728485
i:1407 use minpy:0.00416207313538
acceleration:4.98017987054
float64 : (1408, 1408) matmul (1408, 1408)
i:1408 use numpy:0.0248429775238
i:1408 use minpy:0.0097770690918
acceleration:2.54094323059
float64 : (1409, 1409) matmul (1409, 1409)
i:1409 use numpy:0.0241701602936
i:1409 use minpy:0.00579309463501
acceleration:4.17223639806
float64 : (1410, 1410) matmul (1410, 1410)
i:1410 use numpy:0.0204610824585
i:1410 use minpy:0.00418591499329
acceleration:4.88807882896
float64 : (1411, 1411) matmul (1411, 1411)
i:1411 use numpy:0.0246441364288
i:1411 use minpy:0.00970005989075
acceleration:2.54061693499
float64 : (1412, 1412) matmul (1412, 1412)
i:1412 use numpy:0.0246388912201
i:1412 use minpy:0.00577306747437
acceleration:4.26790286611
float64 : (1413, 1413) matmul (1413, 1413)
i:1413 use numpy:0.0207221508026
i:1413 use minpy:0.00420904159546
acceleration:4.92324685624
float64 : (1414, 1414) matmul (1414, 1414)
i:1414 use numpy:0.02614402771
i:1414 use minpy:0.00971293449402
acceleration:2.69167137141
float64 : (1415, 1415) matmul (1415, 1415)
i:1415 use numpy:0.0525197982788
i:1415 use minpy:0.00653600692749
acceleration:8.03545633618
float64 : (1416, 1416) matmul (1416, 1416)
i:1416 use numpy:0.0282897949219
i:1416 use minpy:0.00499296188354
acceleration:5.66593448572
float64 : (1417, 1417) matmul (1417, 1417)
i:1417 use numpy:0.0249948501587
i:1417 use minpy:0.00985598564148
acceleration:2.53600716031
float64 : (1418, 1418) matmul (1418, 1418)
i:1418 use numpy:0.0253639221191
i:1418 use minpy:0.00610780715942
acceleration:4.15270512921
float64 : (1419, 1419) matmul (1419, 1419)
i:1419 use numpy:0.0212411880493
i:1419 use minpy:0.00419592857361
acceleration:5.06233308711
float64 : (1420, 1420) matmul (1420, 1420)
i:1420 use numpy:0.0250008106232
i:1420 use minpy:0.00985407829285
acceleration:2.53710290097
float64 : (1421, 1421) matmul (1421, 1421)
i:1421 use numpy:0.0247189998627
i:1421 use minpy:0.00584506988525
acceleration:4.22903410018
float64 : (1422, 1422) matmul (1422, 1422)
i:1422 use numpy:0.0208740234375
i:1422 use minpy:0.00420689582825
acceleration:4.96185888354
float64 : (1423, 1423) matmul (1423, 1423)
i:1423 use numpy:0.0251069068909
i:1423 use minpy:0.0098729133606
acceleration:2.54300893504
float64 : (1424, 1424) matmul (1424, 1424)
i:1424 use numpy:0.07648396492
i:1424 use minpy:0.00622606277466
acceleration:12.2844834189
float64 : (1425, 1425) matmul (1425, 1425)
i:1425 use numpy:0.03329205513
i:1425 use minpy:0.00460386276245
acceleration:7.23133091662
float64 : (1426, 1426) matmul (1426, 1426)
i:1426 use numpy:0.0257179737091
i:1426 use minpy:0.00988698005676
acceleration:2.60119607418
float64 : (1427, 1427) matmul (1427, 1427)
i:1427 use numpy:0.0253570079803
i:1427 use minpy:0.00600504875183
acceleration:4.22261484099
float64 : (1428, 1428) matmul (1428, 1428)
i:1428 use numpy:0.0215768814087
i:1428 use minpy:0.00429201126099
acceleration:5.02721919787
float64 : (1429, 1429) matmul (1429, 1429)
i:1429 use numpy:0.0260961055756
i:1429 use minpy:0.00999712944031
acceleration:2.61035987694
float64 : (1430, 1430) matmul (1430, 1430)
i:1430 use numpy:0.0253028869629
i:1430 use minpy:0.00592613220215
acceleration:4.26971355005
float64 : (1431, 1431) matmul (1431, 1431)
i:1431 use numpy:0.0211658477783
i:1431 use minpy:0.00432109832764
acceleration:4.89825645553
float64 : (1432, 1432) matmul (1432, 1432)
i:1432 use numpy:0.0260410308838
i:1432 use minpy:0.0103850364685
acceleration:2.50755314753
float64 : (1433, 1433) matmul (1433, 1433)
i:1433 use numpy:0.0262792110443
i:1433 use minpy:0.00607705116272
acceleration:4.32433598807
float64 : (1434, 1434) matmul (1434, 1434)
i:1434 use numpy:0.0210781097412
i:1434 use minpy:0.00429081916809
acceleration:4.9123742846
float64 : (1435, 1435) matmul (1435, 1435)
i:1435 use numpy:0.0295670032501
i:1435 use minpy:0.0102319717407
acceleration:2.88966818902
float64 : (1436, 1436) matmul (1436, 1436)
i:1436 use numpy:0.0271339416504
i:1436 use minpy:0.00630903244019
acceleration:4.30080870682
float64 : (1437, 1437) matmul (1437, 1437)
i:1437 use numpy:0.0213708877563
i:1437 use minpy:0.00441694259644
acceleration:4.83838929073
float64 : (1438, 1438) matmul (1438, 1438)
i:1438 use numpy:0.025515794754
i:1438 use minpy:0.0102910995483
acceleration:2.47940413307
float64 : (1439, 1439) matmul (1439, 1439)
i:1439 use numpy:0.0253999233246
i:1439 use minpy:0.00601005554199
acceleration:4.22623770232
float64 : (1440, 1440) matmul (1440, 1440)
i:1440 use numpy:0.0206599235535
i:1440 use minpy:0.00433707237244
acceleration:4.76356439998
float64 : (1441, 1441) matmul (1441, 1441)
i:1441 use numpy:0.102683067322
i:1441 use minpy:0.0101661682129
acceleration:10.1004690432
float64 : (1442, 1442) matmul (1442, 1442)
i:1442 use numpy:0.0249869823456
i:1442 use minpy:0.00605583190918
acceleration:4.1261023622
float64 : (1443, 1443) matmul (1443, 1443)
i:1443 use numpy:0.0212848186493
i:1443 use minpy:0.0043580532074
acceleration:4.88401991356
float64 : (1444, 1444) matmul (1444, 1444)
i:1444 use numpy:0.0301349163055
i:1444 use minpy:0.0106298923492
acceleration:2.83492205899
float64 : (1445, 1445) matmul (1445, 1445)
i:1445 use numpy:0.0255980491638
i:1445 use minpy:0.00604104995728
acceleration:4.23735101429
float64 : (1446, 1446) matmul (1446, 1446)
i:1446 use numpy:0.0242700576782
i:1446 use minpy:0.00434803962708
acceleration:5.58183911828
float64 : (1447, 1447) matmul (1447, 1447)
i:1447 use numpy:0.0260579586029
i:1447 use minpy:0.0102560520172
acceleration:2.54073970756
float64 : (1448, 1448) matmul (1448, 1448)
i:1448 use numpy:0.0252728462219
i:1448 use minpy:0.00609302520752
acceleration:4.14783221161
float64 : (1449, 1449) matmul (1449, 1449)
i:1449 use numpy:0.021665096283
i:1449 use minpy:0.0044059753418
acceleration:4.91720779221
float64 : (1450, 1450) matmul (1450, 1450)
i:1450 use numpy:0.026181936264
i:1450 use minpy:0.010330915451
acceleration:2.53432877155
float64 : (1451, 1451) matmul (1451, 1451)
i:1451 use numpy:0.0259001255035
i:1451 use minpy:0.00619101524353
acceleration:4.18350213733
float64 : (1452, 1452) matmul (1452, 1452)
i:1452 use numpy:0.0331449508667
i:1452 use minpy:0.00439882278442
acceleration:7.53495934959
float64 : (1453, 1453) matmul (1453, 1453)
i:1453 use numpy:0.0319268703461
i:1453 use minpy:0.0104460716248
acceleration:3.05635185101
float64 : (1454, 1454) matmul (1454, 1454)
i:1454 use numpy:0.02610206604
i:1454 use minpy:0.00610399246216
acceleration:4.27622841965
float64 : (1455, 1455) matmul (1455, 1455)
i:1455 use numpy:0.0218420028687
i:1455 use minpy:0.00437712669373
acceleration:4.99003213683
float64 : (1456, 1456) matmul (1456, 1456)
i:1456 use numpy:0.026223897934
i:1456 use minpy:0.0103960037231
acceleration:2.52249793597
float64 : (1457, 1457) matmul (1457, 1457)
i:1457 use numpy:0.0421130657196
i:1457 use minpy:0.0188610553741
acceleration:2.23280536981
float64 : (1458, 1458) matmul (1458, 1458)
i:1458 use numpy:0.0217671394348
i:1458 use minpy:0.00438499450684
acceleration:4.9640060896
float64 : (1459, 1459) matmul (1459, 1459)
i:1459 use numpy:0.0306448936462
i:1459 use minpy:0.0105459690094
acceleration:2.90583953157
float64 : (1460, 1460) matmul (1460, 1460)
i:1460 use numpy:0.0261719226837
i:1460 use minpy:0.00629496574402
acceleration:4.15759572776
float64 : (1461, 1461) matmul (1461, 1461)
i:1461 use numpy:0.0311689376831
i:1461 use minpy:0.0047299861908
acceleration:6.58964665558
float64 : (1462, 1462) matmul (1462, 1462)
i:1462 use numpy:0.0329720973969
i:1462 use minpy:0.010792016983
acceleration:3.05523031039
float64 : (1463, 1463) matmul (1463, 1463)
i:1463 use numpy:0.0269091129303
i:1463 use minpy:0.00622892379761
acceleration:4.32002602771
float64 : (1464, 1464) matmul (1464, 1464)
i:1464 use numpy:0.0224649906158
i:1464 use minpy:0.00447916984558
acceleration:5.01543620589
float64 : (1465, 1465) matmul (1465, 1465)
i:1465 use numpy:0.0270478725433
i:1465 use minpy:0.0105540752411
acceleration:2.56278943683
float64 : (1466, 1466) matmul (1466, 1466)
i:1466 use numpy:0.0371730327606
i:1466 use minpy:0.00635695457458
acceleration:5.84761654728
float64 : (1467, 1467) matmul (1467, 1467)
i:1467 use numpy:0.0233352184296
i:1467 use minpy:0.00439620018005
acceleration:5.30804273551
float64 : (1468, 1468) matmul (1468, 1468)
i:1468 use numpy:0.0317997932434
i:1468 use minpy:0.0112590789795
acceleration:2.82436896493
float64 : (1469, 1469) matmul (1469, 1469)
i:1469 use numpy:0.0269639492035
i:1469 use minpy:0.00624418258667
acceleration:4.31825124093
float64 : (1470, 1470) matmul (1470, 1470)
i:1470 use numpy:0.0232400894165
i:1470 use minpy:0.00455808639526
acceleration:5.09865048645
float64 : (1471, 1471) matmul (1471, 1471)
i:1471 use numpy:0.0283081531525
i:1471 use minpy:0.0106868743896
acceleration:2.64887114046
float64 : (1472, 1472) matmul (1472, 1472)
i:1472 use numpy:0.0310368537903
i:1472 use minpy:0.00642704963684
acceleration:4.82909819342
float64 : (1473, 1473) matmul (1473, 1473)
i:1473 use numpy:0.0245950222015
i:1473 use minpy:0.00452303886414
acceleration:5.43772073164
float64 : (1474, 1474) matmul (1474, 1474)
i:1474 use numpy:0.0292510986328
i:1474 use minpy:0.0107598304749
acceleration:2.71854642145
float64 : (1475, 1475) matmul (1475, 1475)
i:1475 use numpy:0.0275678634644
i:1475 use minpy:0.00628590583801
acceleration:4.38566281054
float64 : (1476, 1476) matmul (1476, 1476)
i:1476 use numpy:0.0274031162262
i:1476 use minpy:0.00508594512939
acceleration:5.38800862554
float64 : (1477, 1477) matmul (1477, 1477)
i:1477 use numpy:0.0315299034119
i:1477 use minpy:0.0107860565186
acceleration:2.92320954907
float64 : (1478, 1478) matmul (1478, 1478)
i:1478 use numpy:0.0275750160217
i:1478 use minpy:0.00630593299866
acceleration:4.37286853945
float64 : (1479, 1479) matmul (1479, 1479)
i:1479 use numpy:0.0396671295166
i:1479 use minpy:0.00581502914429
acceleration:6.82148421484
float64 : (1480, 1480) matmul (1480, 1480)
i:1480 use numpy:0.0350689888
i:1480 use minpy:0.0109550952911
acceleration:3.20115780539
float64 : (1481, 1481) matmul (1481, 1481)
i:1481 use numpy:0.0289671421051
i:1481 use minpy:0.00641489028931
acceleration:4.51560990114
float64 : (1482, 1482) matmul (1482, 1482)
i:1482 use numpy:0.0407731533051
i:1482 use minpy:0.00468897819519
acceleration:8.69553058423
float64 : (1483, 1483) matmul (1483, 1483)
i:1483 use numpy:0.0296759605408
i:1483 use minpy:0.0108880996704
acceleration:2.72554086012
float64 : (1484, 1484) matmul (1484, 1484)
i:1484 use numpy:0.0376288890839
i:1484 use minpy:0.00659894943237
acceleration:5.70225449816
float64 : (1485, 1485) matmul (1485, 1485)
i:1485 use numpy:0.0281820297241
i:1485 use minpy:0.00463008880615
acceleration:6.08671472709
float64 : (1486, 1486) matmul (1486, 1486)
i:1486 use numpy:0.028685092926
i:1486 use minpy:0.0108728408813
acceleration:2.63823348829
float64 : (1487, 1487) matmul (1487, 1487)
i:1487 use numpy:0.0282211303711
i:1487 use minpy:0.00661182403564
acceleration:4.26828212895
float64 : (1488, 1488) matmul (1488, 1488)
i:1488 use numpy:0.0239899158478
i:1488 use minpy:0.00454807281494
acceleration:5.27474313273
float64 : (1489, 1489) matmul (1489, 1489)
i:1489 use numpy:0.0344760417938
i:1489 use minpy:0.0116059780121
acceleration:2.97054171203
float64 : (1490, 1490) matmul (1490, 1490)
i:1490 use numpy:0.0282111167908
i:1490 use minpy:0.00648093223572
acceleration:4.35294117647
float64 : (1491, 1491) matmul (1491, 1491)
i:1491 use numpy:0.0260369777679
i:1491 use minpy:0.0170321464539
acceleration:1.5286962121
float64 : (1492, 1492) matmul (1492, 1492)
i:1492 use numpy:0.0284321308136
i:1492 use minpy:0.0109148025513
acceleration:2.60491480996
float64 : (1493, 1493) matmul (1493, 1493)
i:1493 use numpy:0.0289371013641
i:1493 use minpy:0.00651621818542
acceleration:4.44078153013
float64 : (1494, 1494) matmul (1494, 1494)
i:1494 use numpy:0.0243549346924
i:1494 use minpy:0.00463199615479
acceleration:5.25797817583
float64 : (1495, 1495) matmul (1495, 1495)
i:1495 use numpy:0.0293049812317
i:1495 use minpy:0.0110759735107
acceleration:2.64581539521
float64 : (1496, 1496) matmul (1496, 1496)
i:1496 use numpy:0.0294661521912
i:1496 use minpy:0.00645995140076
acceleration:4.56135818417
float64 : (1497, 1497) matmul (1497, 1497)
i:1497 use numpy:0.0266029834747
i:1497 use minpy:0.00467586517334
acceleration:5.68942484193
float64 : (1498, 1498) matmul (1498, 1498)
i:1498 use numpy:0.0352799892426
i:1498 use minpy:0.0115900039673
acceleration:3.04400148112
float64 : (1499, 1499) matmul (1499, 1499)
i:1499 use numpy:0.0397918224335
i:1499 use minpy:0.00668692588806
acceleration:5.95068991336
float64 : (1500, 1500) matmul (1500, 1500)
i:1500 use numpy:0.0268189907074
i:1500 use minpy:0.0057270526886
acceleration:4.68286083011
float64 : (1501, 1501) matmul (1501, 1501)
i:1501 use numpy:0.0457479953766
i:1501 use minpy:0.0113999843597
acceleration:4.01298755621
float64 : (1502, 1502) matmul (1502, 1502)
i:1502 use numpy:0.038948059082
i:1502 use minpy:0.00745296478271
acceleration:5.22584772873
float64 : (1503, 1503) matmul (1503, 1503)
i:1503 use numpy:0.0502779483795
i:1503 use minpy:0.00554800033569
acceleration:9.06235496347
float64 : (1504, 1504) matmul (1504, 1504)
i:1504 use numpy:0.0671811103821
i:1504 use minpy:0.0259039402008
acceleration:2.59347071763
float64 : (1505, 1505) matmul (1505, 1505)
i:1505 use numpy:0.0312969684601
i:1505 use minpy:0.00653886795044
acceleration:4.78629767374
float64 : (1506, 1506) matmul (1506, 1506)
i:1506 use numpy:0.0267159938812
i:1506 use minpy:0.00486207008362
acceleration:5.49477761977
float64 : (1507, 1507) matmul (1507, 1507)
i:1507 use numpy:0.0305700302124
i:1507 use minpy:0.0110459327698
acceleration:2.76753723289
float64 : (1508, 1508) matmul (1508, 1508)
i:1508 use numpy:0.0305659770966
i:1508 use minpy:0.00653505325317
acceleration:4.67723458592
float64 : (1509, 1509) matmul (1509, 1509)
i:1509 use numpy:0.0580840110779
i:1509 use minpy:0.00483584403992
acceleration:12.0111423359
float64 : (1510, 1510) matmul (1510, 1510)
i:1510 use numpy:0.0343499183655
i:1510 use minpy:0.0111870765686
acceleration:3.07049997869
float64 : (1511, 1511) matmul (1511, 1511)
i:1511 use numpy:0.037132024765
i:1511 use minpy:0.00706076622009
acceleration:5.25892284315
float64 : (1512, 1512) matmul (1512, 1512)
i:1512 use numpy:0.0307531356812
i:1512 use minpy:0.00488710403442
acceleration:6.29271148405
float64 : (1513, 1513) matmul (1513, 1513)
i:1513 use numpy:0.0340819358826
i:1513 use minpy:0.0113790035248
acceleration:2.99515997234
float64 : (1514, 1514) matmul (1514, 1514)
i:1514 use numpy:0.029669046402
i:1514 use minpy:0.00657510757446
acceleration:4.51232866778
float64 : (1515, 1515) matmul (1515, 1515)
i:1515 use numpy:0.0294210910797
i:1515 use minpy:0.00499391555786
acceleration:5.89138737706
float64 : (1516, 1516) matmul (1516, 1516)
i:1516 use numpy:0.0411159992218
i:1516 use minpy:0.0114469528198
acceleration:3.59187286512
float64 : (1517, 1517) matmul (1517, 1517)
i:1517 use numpy:0.0316870212555
i:1517 use minpy:0.00716805458069
acceleration:4.42058872443
float64 : (1518, 1518) matmul (1518, 1518)
i:1518 use numpy:0.0473420619965
i:1518 use minpy:0.00533699989319
acceleration:8.8705383069
float64 : (1519, 1519) matmul (1519, 1519)
i:1519 use numpy:0.0384058952332
i:1519 use minpy:0.0112149715424
acceleration:3.42452007908
float64 : (1520, 1520) matmul (1520, 1520)
i:1520 use numpy:0.0301568508148
i:1520 use minpy:0.00656294822693
acceleration:4.59501580267
float64 : (1521, 1521) matmul (1521, 1521)
i:1521 use numpy:0.0282070636749
i:1521 use minpy:0.0057098865509
acceleration:4.94003925007
float64 : (1522, 1522) matmul (1522, 1522)
i:1522 use numpy:0.0306489467621
i:1522 use minpy:0.0112040042877
acceleration:2.73553507969
float64 : (1523, 1523) matmul (1523, 1523)
i:1523 use numpy:0.0358428955078
i:1523 use minpy:0.00672101974487
acceleration:5.33295494856
float64 : (1524, 1524) matmul (1524, 1524)
i:1524 use numpy:0.026741027832
i:1524 use minpy:0.00489497184753
acceleration:5.46295845307
float64 : (1525, 1525) matmul (1525, 1525)
i:1525 use numpy:0.033704996109
i:1525 use minpy:0.0114841461182
acceleration:2.93491529646
float64 : (1526, 1526) matmul (1526, 1526)
i:1526 use numpy:0.0388970375061
i:1526 use minpy:0.00670909881592
acceleration:5.79765458422
float64 : (1527, 1527) matmul (1527, 1527)
i:1527 use numpy:0.0330250263214
i:1527 use minpy:0.00531005859375
acceleration:6.21933369253
float64 : (1528, 1528) matmul (1528, 1528)
i:1528 use numpy:0.0352218151093
i:1528 use minpy:0.0114510059357
acceleration:3.07587082804
float64 : (1529, 1529) matmul (1529, 1529)
i:1529 use numpy:0.029923915863
i:1529 use minpy:0.00673699378967
acceleration:4.44173125243
float64 : (1530, 1530) matmul (1530, 1530)
i:1530 use numpy:0.0281209945679
i:1530 use minpy:0.00563097000122
acceleration:4.99398763655
float64 : (1531, 1531) matmul (1531, 1531)
i:1531 use numpy:0.033910036087
i:1531 use minpy:0.0113139152527
acceleration:2.99719728579
float64 : (1532, 1532) matmul (1532, 1532)
i:1532 use numpy:0.029000043869
i:1532 use minpy:0.00671219825745
acceleration:4.32049870351
float64 : (1533, 1533) matmul (1533, 1533)
i:1533 use numpy:0.0249381065369
i:1533 use minpy:0.00494313240051
acceleration:5.04500072348
float64 : (1534, 1534) matmul (1534, 1534)
i:1534 use numpy:0.0299761295319
i:1534 use minpy:0.0112209320068
acceleration:2.67144739079
float64 : (1535, 1535) matmul (1535, 1535)
i:1535 use numpy:0.0290780067444
i:1535 use minpy:0.00683283805847
acceleration:4.25562650476
float64 : (1536, 1536) matmul (1536, 1536)
i:1536 use numpy:0.0253849029541
i:1536 use minpy:0.00496506690979
acceleration:5.11270108043
float64 : (1537, 1537) matmul (1537, 1537)
i:1537 use numpy:0.0304119586945
i:1537 use minpy:0.0115230083466
acceleration:2.63923775631
float64 : (1538, 1538) matmul (1538, 1538)
i:1538 use numpy:0.0292921066284
i:1538 use minpy:0.00671410560608
acceleration:4.36277120841
float64 : (1539, 1539) matmul (1539, 1539)
i:1539 use numpy:0.0251271724701
i:1539 use minpy:0.00484895706177
acceleration:5.18197462877
float64 : (1540, 1540) matmul (1540, 1540)
i:1540 use numpy:0.0344958305359
i:1540 use minpy:0.0113301277161
acceleration:3.04461091705
float64 : (1541, 1541) matmul (1541, 1541)
i:1541 use numpy:0.0300929546356
i:1541 use minpy:0.00687384605408
acceleration:4.37789185252
float64 : (1542, 1542) matmul (1542, 1542)
i:1542 use numpy:0.0312230587006
i:1542 use minpy:0.00501489639282
acceleration:6.22606256537
float64 : (1543, 1543) matmul (1543, 1543)
i:1543 use numpy:0.0335619449615
i:1543 use minpy:0.013011932373
acceleration:2.57932058047
float64 : (1544, 1544) matmul (1544, 1544)
i:1544 use numpy:0.0467147827148
i:1544 use minpy:0.00698208808899
acceleration:6.69066074782
float64 : (1545, 1545) matmul (1545, 1545)
i:1545 use numpy:0.0259020328522
i:1545 use minpy:0.00485301017761
acceleration:5.33731269958
float64 : (1546, 1546) matmul (1546, 1546)
i:1546 use numpy:0.0495319366455
i:1546 use minpy:0.0115311145782
acceleration:4.29550294635
float64 : (1547, 1547) matmul (1547, 1547)
i:1547 use numpy:0.0338308811188
i:1547 use minpy:0.00708603858948
acceleration:4.77430099929
float64 : (1548, 1548) matmul (1548, 1548)
i:1548 use numpy:0.029825925827
i:1548 use minpy:0.00487685203552
acceleration:6.11581520411
float64 : (1549, 1549) matmul (1549, 1549)
i:1549 use numpy:0.0527160167694
i:1549 use minpy:0.0117959976196
acceleration:4.4689748565
float64 : (1550, 1550) matmul (1550, 1550)
i:1550 use numpy:0.0337800979614
i:1550 use minpy:0.00680088996887
acceleration:4.96701139351
float64 : (1551, 1551) matmul (1551, 1551)
i:1551 use numpy:0.026004076004
i:1551 use minpy:0.00490522384644
acceleration:5.30130261495
float64 : (1552, 1552) matmul (1552, 1552)
i:1552 use numpy:0.0307621955872
i:1552 use minpy:0.0119390487671
acceleration:2.57660356258
float64 : (1553, 1553) matmul (1553, 1553)
i:1553 use numpy:0.0493478775024
i:1553 use minpy:0.0232079029083
acceleration:2.12633936368
float64 : (1554, 1554) matmul (1554, 1554)
i:1554 use numpy:0.0294809341431
i:1554 use minpy:0.0209038257599
acceleration:1.41031285286
float64 : (1555, 1555) matmul (1555, 1555)
i:1555 use numpy:0.0368051528931
i:1555 use minpy:0.0250730514526
acceleration:1.4679167776
float64 : (1556, 1556) matmul (1556, 1556)
i:1556 use numpy:0.0329191684723
i:1556 use minpy:0.00732707977295
acceleration:4.49280879865
float64 : (1557, 1557) matmul (1557, 1557)
i:1557 use numpy:0.0341949462891
i:1557 use minpy:0.00495910644531
acceleration:6.89538461538
float64 : (1558, 1558) matmul (1558, 1558)
i:1558 use numpy:0.0313770771027
i:1558 use minpy:0.011726140976
acceleration:2.67582294695
float64 : (1559, 1559) matmul (1559, 1559)
i:1559 use numpy:0.0328531265259
i:1559 use minpy:0.00731301307678
acceleration:4.49242004369
float64 : (1560, 1560) matmul (1560, 1560)
i:1560 use numpy:0.0301079750061
i:1560 use minpy:0.00495290756226
acceleration:6.0788485607
float64 : (1561, 1561) matmul (1561, 1561)
i:1561 use numpy:0.0268759727478
i:1561 use minpy:0.00492095947266
acceleration:5.46153100775
float64 : (1562, 1562) matmul (1562, 1562)
i:1562 use numpy:0.0317378044128
i:1562 use minpy:0.00512409210205
acceleration:6.19383956821
float64 : (1563, 1563) matmul (1563, 1563)
i:1563 use numpy:0.026918888092
i:1563 use minpy:0.00489687919617
acceleration:5.49715176007
float64 : (1564, 1564) matmul (1564, 1564)
i:1564 use numpy:0.0321679115295
i:1564 use minpy:0.0119049549103
acceleration:2.70206076142
float64 : (1565, 1565) matmul (1565, 1565)
i:1565 use numpy:0.0352458953857
i:1565 use minpy:0.00696802139282
acceleration:5.05823581742
float64 : (1566, 1566) matmul (1566, 1566)
i:1566 use numpy:0.0272238254547
i:1566 use minpy:0.00496697425842
acceleration:5.48096769548
float64 : (1567, 1567) matmul (1567, 1567)
i:1567 use numpy:0.0348949432373
i:1567 use minpy:0.0124940872192
acceleration:2.79291657125
float64 : (1568, 1568) matmul (1568, 1568)
i:1568 use numpy:0.0343251228333
i:1568 use minpy:0.00702118873596
acceleration:4.88879079086
float64 : (1569, 1569) matmul (1569, 1569)
i:1569 use numpy:0.0272791385651
i:1569 use minpy:0.00498914718628
acceleration:5.46769568957
float64 : (1570, 1570) matmul (1570, 1570)
i:1570 use numpy:0.0273931026459
i:1570 use minpy:0.00503587722778
acceleration:5.43958905407
float64 : (1571, 1571) matmul (1571, 1571)
i:1571 use numpy:0.0366241931915
i:1571 use minpy:0.00552797317505
acceleration:6.62524799448
float64 : (1572, 1572) matmul (1572, 1572)
i:1572 use numpy:0.033182144165
i:1572 use minpy:0.00499987602234
acceleration:6.63659339087
float64 : (1573, 1573) matmul (1573, 1573)
i:1573 use numpy:0.0814428329468
i:1573 use minpy:0.0121109485626
acceleration:6.72472783826
float64 : (1574, 1574) matmul (1574, 1574)
i:1574 use numpy:0.0326750278473
i:1574 use minpy:0.00710201263428
acceleration:4.60081240768
float64 : (1575, 1575) matmul (1575, 1575)
i:1575 use numpy:0.0281958580017
i:1575 use minpy:0.00507616996765
acceleration:5.55455356723
float64 : (1576, 1576) matmul (1576, 1576)
i:1576 use numpy:0.0328991413116
i:1576 use minpy:0.0121209621429
acceleration:2.71423513444
float64 : (1577, 1577) matmul (1577, 1577)
i:1577 use numpy:0.0457479953766
i:1577 use minpy:0.00814890861511
acceleration:5.61400275023
float64 : (1578, 1578) matmul (1578, 1578)
i:1578 use numpy:0.0276420116425
i:1578 use minpy:0.00509309768677
acceleration:5.42734762663
float64 : (1579, 1579) matmul (1579, 1579)
i:1579 use numpy:0.0328059196472
i:1579 use minpy:0.0121102333069
acceleration:2.70894200102
float64 : (1580, 1580) matmul (1580, 1580)
i:1580 use numpy:0.0327088832855
i:1580 use minpy:0.00714588165283
acceleration:4.57730548512
float64 : (1581, 1581) matmul (1581, 1581)
i:1581 use numpy:0.0275678634644
i:1581 use minpy:0.00506114959717
acceleration:5.44695684944
float64 : (1582, 1582) matmul (1582, 1582)
i:1582 use numpy:0.0569689273834
i:1582 use minpy:0.0120930671692
acceleration:4.7108749655
float64 : (1583, 1583) matmul (1583, 1583)
i:1583 use numpy:0.0332751274109
i:1583 use minpy:0.00733399391174
acceleration:4.53710867657
float64 : (1584, 1584) matmul (1584, 1584)
i:1584 use numpy:0.0277211666107
i:1584 use minpy:0.00516200065613
acceleration:5.37023694056
float64 : (1585, 1585) matmul (1585, 1585)
i:1585 use numpy:0.0374310016632
i:1585 use minpy:0.0123279094696
acceleration:3.03628135456
float64 : (1586, 1586) matmul (1586, 1586)
i:1586 use numpy:0.0330312252045
i:1586 use minpy:0.00717306137085
acceleration:4.60489928871
float64 : (1587, 1587) matmul (1587, 1587)
i:1587 use numpy:0.0279769897461
i:1587 use minpy:0.00508308410645
acceleration:5.50393996248
float64 : (1588, 1588) matmul (1588, 1588)
i:1588 use numpy:0.032016992569
i:1588 use minpy:0.00570797920227
acceleration:5.60916419531
float64 : (1589, 1589) matmul (1589, 1589)
i:1589 use numpy:0.0516321659088
i:1589 use minpy:0.00606107711792
acceleration:8.51864526788
float64 : (1590, 1590) matmul (1590, 1590)
i:1590 use numpy:0.0486841201782
i:1590 use minpy:0.00579595565796
acceleration:8.39967091732
float64 : (1591, 1591) matmul (1591, 1591)
i:1591 use numpy:0.055428981781
i:1591 use minpy:0.0137150287628
acceleration:4.04147761843
float64 : (1592, 1592) matmul (1592, 1592)
i:1592 use numpy:0.05952501297
i:1592 use minpy:0.00775694847107
acceleration:7.67376671277
float64 : (1593, 1593) matmul (1593, 1593)
i:1593 use numpy:0.0413801670074
i:1593 use minpy:0.00582909584045
acceleration:7.0988997505
float64 : (1594, 1594) matmul (1594, 1594)
i:1594 use numpy:0.0355529785156
i:1594 use minpy:0.0131099224091
acceleration:2.71191372506
float64 : (1595, 1595) matmul (1595, 1595)
i:1595 use numpy:0.0415499210358
i:1595 use minpy:0.00733304023743
acceleration:5.6661247846
float64 : (1596, 1596) matmul (1596, 1596)
i:1596 use numpy:0.0292589664459
i:1596 use minpy:0.00518989562988
acceleration:5.63767916207
float64 : (1597, 1597) matmul (1597, 1597)
i:1597 use numpy:0.0296900272369
i:1597 use minpy:0.00528001785278
acceleration:5.62309220627
float64 : (1598, 1598) matmul (1598, 1598)
i:1598 use numpy:0.0341222286224
i:1598 use minpy:0.0054190158844
acceleration:6.29675744643
float64 : (1599, 1599) matmul (1599, 1599)
i:1599 use numpy:0.0302350521088
i:1599 use minpy:0.00521612167358
acceleration:5.79646219947
float64 : (1600, 1600) matmul (1600, 1600)
i:1600 use numpy:0.0349218845367
i:1600 use minpy:0.0124640464783
acceleration:2.8018095566
float64 : (1601, 1601) matmul (1601, 1601)
i:1601 use numpy:0.035019159317
i:1601 use minpy:0.00738000869751
acceleration:4.74513794663
float64 : (1602, 1602) matmul (1602, 1602)
i:1602 use numpy:0.0324912071228
i:1602 use minpy:0.00528407096863
acceleration:6.14889681
float64 : (1603, 1603) matmul (1603, 1603)
i:1603 use numpy:0.0365030765533
i:1603 use minpy:0.0126178264618
acceleration:2.89297658863
float64 : (1604, 1604) matmul (1604, 1604)
i:1604 use numpy:0.0352520942688
i:1604 use minpy:0.00744700431824
acceleration:4.73372818953
float64 : (1605, 1605) matmul (1605, 1605)
i:1605 use numpy:0.03156208992
i:1605 use minpy:0.00521397590637
acceleration:6.05336320819
float64 : (1606, 1606) matmul (1606, 1606)
i:1606 use numpy:0.0306808948517
i:1606 use minpy:0.00525188446045
acceleration:5.84188305793
float64 : (1607, 1607) matmul (1607, 1607)
i:1607 use numpy:0.034530878067
i:1607 use minpy:0.00542998313904
acceleration:6.3592974753
float64 : (1608, 1608) matmul (1608, 1608)
i:1608 use numpy:0.0335760116577
i:1608 use minpy:0.00548696517944
acceleration:6.11923177196
float64 : (1609, 1609) matmul (1609, 1609)
i:1609 use numpy:0.0298299789429
i:1609 use minpy:0.00525093078613
acceleration:5.68089357065
float64 : (1610, 1610) matmul (1610, 1610)
i:1610 use numpy:0.0354199409485
i:1610 use minpy:0.005539894104
acceleration:6.39361335858
float64 : (1611, 1611) matmul (1611, 1611)
i:1611 use numpy:0.031268119812
i:1611 use minpy:0.00530695915222
acceleration:5.89190889079
float64 : (1612, 1612) matmul (1612, 1612)
i:1612 use numpy:0.0358459949493
i:1612 use minpy:0.012815952301
acceleration:2.79698255014
float64 : (1613, 1613) matmul (1613, 1613)
i:1613 use numpy:0.041944026947
i:1613 use minpy:0.00744009017944
acceleration:5.63756969813
float64 : (1614, 1614) matmul (1614, 1614)
i:1614 use numpy:0.0413768291473
i:1614 use minpy:0.00533413887024
acceleration:7.75698386448
float64 : (1615, 1615) matmul (1615, 1615)
i:1615 use numpy:0.0356559753418
i:1615 use minpy:0.0126819610596
acceleration:2.81155060911
float64 : (1616, 1616) matmul (1616, 1616)
i:1616 use numpy:0.0383410453796
i:1616 use minpy:0.00752401351929
acceleration:5.09582356296
float64 : (1617, 1617) matmul (1617, 1617)
i:1617 use numpy:0.0303499698639
i:1617 use minpy:0.00543713569641
acceleration:5.58197763648
float64 : (1618, 1618) matmul (1618, 1618)
i:1618 use numpy:0.036808013916
i:1618 use minpy:0.0128390789032
acceleration:2.86687340996
float64 : (1619, 1619) matmul (1619, 1619)
i:1619 use numpy:0.0361850261688
i:1619 use minpy:0.00761580467224
acceleration:4.75130701562
float64 : (1620, 1620) matmul (1620, 1620)
i:1620 use numpy:0.0307099819183
i:1620 use minpy:0.00543189048767
acceleration:5.65364526182
float64 : (1621, 1621) matmul (1621, 1621)
i:1621 use numpy:0.0356879234314
i:1621 use minpy:0.0128610134125
acceleration:2.77489201565
float64 : (1622, 1622) matmul (1622, 1622)
i:1622 use numpy:0.0363399982452
i:1622 use minpy:0.00755286216736
acceleration:4.81142081505
float64 : (1623, 1623) matmul (1623, 1623)
i:1623 use numpy:0.0492720603943
i:1623 use minpy:0.00535607337952
acceleration:9.19928778099
float64 : (1624, 1624) matmul (1624, 1624)
i:1624 use numpy:0.0306839942932
i:1624 use minpy:0.00541400909424
acceleration:5.66751805531
float64 : (1625, 1625) matmul (1625, 1625)
i:1625 use numpy:0.0408248901367
i:1625 use minpy:0.00550603866577
acceleration:7.41456655408
float64 : (1626, 1626) matmul (1626, 1626)
i:1626 use numpy:0.0723340511322
i:1626 use minpy:0.00536489486694
acceleration:13.4828459692
float64 : (1627, 1627) matmul (1627, 1627)
i:1627 use numpy:0.0638928413391
i:1627 use minpy:0.0133020877838
acceleration:4.80321904182
float64 : (1628, 1628) matmul (1628, 1628)
i:1628 use numpy:0.0377140045166
i:1628 use minpy:0.00751185417175
acceleration:5.02059859714
float64 : (1629, 1629) matmul (1629, 1629)
i:1629 use numpy:0.0335259437561
i:1629 use minpy:0.00538802146912
acceleration:6.22231072171
float64 : (1630, 1630) matmul (1630, 1630)
i:1630 use numpy:0.0356478691101
i:1630 use minpy:0.05189204216
acceleration:0.68696215501
float64 : (1631, 1631) matmul (1631, 1631)
i:1631 use numpy:0.0521559715271
i:1631 use minpy:0.00758695602417
acceleration:6.87442649739
float64 : (1632, 1632) matmul (1632, 1632)
i:1632 use numpy:0.0306701660156
i:1632 use minpy:0.00539302825928
acceleration:5.68700265252
float64 : (1633, 1633) matmul (1633, 1633)
i:1633 use numpy:0.0330550670624
i:1633 use minpy:0.00548505783081
acceleration:6.02638442146
float64 : (1634, 1634) matmul (1634, 1634)
i:1634 use numpy:0.0348289012909
i:1634 use minpy:0.00559210777283
acceleration:6.22822425922
float64 : (1635, 1635) matmul (1635, 1635)
i:1635 use numpy:0.0303289890289
i:1635 use minpy:0.00539803504944
acceleration:5.61852391679
float64 : (1636, 1636) matmul (1636, 1636)
i:1636 use numpy:0.0474178791046
i:1636 use minpy:0.00540900230408
acceleration:8.76647419227
float64 : (1637, 1637) matmul (1637, 1637)
i:1637 use numpy:0.0414409637451
i:1637 use minpy:0.00647401809692
acceleration:6.4011195404
float64 : (1638, 1638) matmul (1638, 1638)
i:1638 use numpy:0.0301220417023
i:1638 use minpy:0.00540995597839
acceleration:5.567890353
float64 : (1639, 1639) matmul (1639, 1639)
i:1639 use numpy:0.0363080501556
i:1639 use minpy:0.00684118270874
acceleration:5.3072767826
float64 : (1640, 1640) matmul (1640, 1640)
i:1640 use numpy:0.0447800159454
i:1640 use minpy:0.00594806671143
acceleration:7.5284992785
float64 : (1641, 1641) matmul (1641, 1641)
i:1641 use numpy:0.030641078949
i:1641 use minpy:0.00545978546143
acceleration:5.61213973799
float64 : (1642, 1642) matmul (1642, 1642)
i:1642 use numpy:0.030433177948
i:1642 use minpy:0.00551319122314
acceleration:5.52006573257
float64 : (1643, 1643) matmul (1643, 1643)
i:1643 use numpy:0.0359199047089
i:1643 use minpy:0.00568604469299
acceleration:6.31720407564
float64 : (1644, 1644) matmul (1644, 1644)
i:1644 use numpy:0.0308961868286
i:1644 use minpy:0.00546908378601
acceleration:5.64924364619
float64 : (1645, 1645) matmul (1645, 1645)
i:1645 use numpy:0.0327229499817
i:1645 use minpy:0.00550103187561
acceleration:5.94851124691
float64 : (1646, 1646) matmul (1646, 1646)
i:1646 use numpy:0.0359590053558
i:1646 use minpy:0.00564002990723
acceleration:6.37567636118
float64 : (1647, 1647) matmul (1647, 1647)
i:1647 use numpy:0.0366129875183
i:1647 use minpy:0.00546002388
acceleration:6.70564604166
float64 : (1648, 1648) matmul (1648, 1648)
i:1648 use numpy:0.0310301780701
i:1648 use minpy:0.0058970451355
acceleration:5.26198754751
float64 : (1649, 1649) matmul (1649, 1649)
i:1649 use numpy:0.0362091064453
i:1649 use minpy:0.0057110786438
acceleration:6.34015195792
float64 : (1650, 1650) matmul (1650, 1650)
i:1650 use numpy:0.0312230587006
i:1650 use minpy:0.00550079345703
acceleration:5.67610090153
float64 : (1651, 1651) matmul (1651, 1651)
i:1651 use numpy:0.0322451591492
i:1651 use minpy:0.00547099113464
acceleration:5.89384233233
float64 : (1652, 1652) matmul (1652, 1652)
i:1652 use numpy:0.0364310741425
i:1652 use minpy:0.00577688217163
acceleration:6.30635575733
float64 : (1653, 1653) matmul (1653, 1653)
i:1653 use numpy:0.031594991684
i:1653 use minpy:0.00548696517944
acceleration:5.75819066655
float64 : (1654, 1654) matmul (1654, 1654)
i:1654 use numpy:0.0313291549683
i:1654 use minpy:0.00556182861328
acceleration:5.63288751715
float64 : (1655, 1655) matmul (1655, 1655)
i:1655 use numpy:0.0406010150909
i:1655 use minpy:0.00573301315308
acceleration:7.08196789487
float64 : (1656, 1656) matmul (1656, 1656)
i:1656 use numpy:0.0328149795532
i:1656 use minpy:0.00612902641296
acceleration:5.35402808574
float64 : (1657, 1657) matmul (1657, 1657)
i:1657 use numpy:0.0318720340729
i:1657 use minpy:0.00556588172913
acceleration:5.72632255301
float64 : (1658, 1658) matmul (1658, 1658)
i:1658 use numpy:0.0371580123901
i:1658 use minpy:0.0057909488678
acceleration:6.41656717032
float64 : (1659, 1659) matmul (1659, 1659)
i:1659 use numpy:0.0319678783417
i:1659 use minpy:0.00555491447449
acceleration:5.75488218378
float64 : (1660, 1660) matmul (1660, 1660)
i:1660 use numpy:0.031907081604
i:1660 use minpy:0.00562286376953
acceleration:5.67452510176
float64 : (1661, 1661) matmul (1661, 1661)
i:1661 use numpy:0.0376448631287
i:1661 use minpy:0.00580787658691
acceleration:6.48169129721
float64 : (1662, 1662) matmul (1662, 1662)
i:1662 use numpy:0.0399880409241
i:1662 use minpy:0.00565099716187
acceleration:7.07628048266
float64 : (1663, 1663) matmul (1663, 1663)
i:1663 use numpy:0.0366649627686
i:1663 use minpy:0.0206799507141
acceleration:1.77297147732
float64 : (1664, 1664) matmul (1664, 1664)
i:1664 use numpy:0.037535905838
i:1664 use minpy:0.00582003593445
acceleration:6.44942853632
float64 : (1665, 1665) matmul (1665, 1665)
i:1665 use numpy:0.0325829982758
i:1665 use minpy:0.0056619644165
acceleration:5.75471618663
float64 : (1666, 1666) matmul (1666, 1666)
i:1666 use numpy:0.038242816925
i:1666 use minpy:0.0056459903717
acceleration:6.77344706727
float64 : (1667, 1667) matmul (1667, 1667)
i:1667 use numpy:0.0386960506439
i:1667 use minpy:0.00635385513306
acceleration:6.09016885553
float64 : (1668, 1668) matmul (1668, 1668)
i:1668 use numpy:0.0327589511871
i:1668 use minpy:0.00569796562195
acceleration:5.74923636972
float64 : (1669, 1669) matmul (1669, 1669)
i:1669 use numpy:0.0330641269684
i:1669 use minpy:0.00563812255859
acceleration:5.86438599459
float64 : (1670, 1670) matmul (1670, 1670)
i:1670 use numpy:0.0378768444061
i:1670 use minpy:0.00583696365356
acceleration:6.4891348746
float64 : (1671, 1671) matmul (1671, 1671)
i:1671 use numpy:0.0332639217377
i:1671 use minpy:0.00565481185913
acceleration:5.88240998398
float64 : (1672, 1672) matmul (1672, 1672)
i:1672 use numpy:0.0326409339905
i:1672 use minpy:0.00576901435852
acceleration:5.65797412902
float64 : (1673, 1673) matmul (1673, 1673)
i:1673 use numpy:0.0478668212891
i:1673 use minpy:0.00582408905029
acceleration:8.21876535124
float64 : (1674, 1674) matmul (1674, 1674)
i:1674 use numpy:0.0327079296112
i:1674 use minpy:0.00566411018372
acceleration:5.77459275161
float64 : (1675, 1675) matmul (1675, 1675)
i:1675 use numpy:0.0328660011292
i:1675 use minpy:0.00566506385803
acceleration:5.8015235049
float64 : (1676, 1676) matmul (1676, 1676)
i:1676 use numpy:0.0394411087036
i:1676 use minpy:0.00593304634094
acceleration:6.64769941732
float64 : (1677, 1677) matmul (1677, 1677)
i:1677 use numpy:0.0373730659485
i:1677 use minpy:0.00567197799683
acceleration:6.58907103825
float64 : (1678, 1678) matmul (1678, 1678)
i:1678 use numpy:0.0330338478088
i:1678 use minpy:0.00570201873779
acceleration:5.79336009366
float64 : (1679, 1679) matmul (1679, 1679)
i:1679 use numpy:0.0395770072937
i:1679 use minpy:0.00599098205566
acceleration:6.60609678446
float64 : (1680, 1680) matmul (1680, 1680)
i:1680 use numpy:0.0331752300262
i:1680 use minpy:0.00575399398804
acceleration:5.76560039778
float64 : (1681, 1681) matmul (1681, 1681)
i:1681 use numpy:0.0348289012909
i:1681 use minpy:0.00576591491699
acceleration:6.04048130996
float64 : (1682, 1682) matmul (1682, 1682)
i:1682 use numpy:0.0386278629303
i:1682 use minpy:0.00607204437256
acceleration:6.36159101618
float64 : (1683, 1683) matmul (1683, 1683)
i:1683 use numpy:0.0343289375305
i:1683 use minpy:0.00586295127869
acceleration:5.85523158879
float64 : (1684, 1684) matmul (1684, 1684)
i:1684 use numpy:0.0337219238281
i:1684 use minpy:0.00577402114868
acceleration:5.84028408622
float64 : (1685, 1685) matmul (1685, 1685)
i:1685 use numpy:0.0391638278961
i:1685 use minpy:0.00596213340759
acceleration:6.56876074699
float64 : (1686, 1686) matmul (1686, 1686)
i:1686 use numpy:0.0373899936676
i:1686 use minpy:0.00603199005127
acceleration:6.19861660079
float64 : (1687, 1687) matmul (1687, 1687)
i:1687 use numpy:0.0348339080811
i:1687 use minpy:0.00578093528748
acceleration:6.02565265806
float64 : (1688, 1688) matmul (1688, 1688)
i:1688 use numpy:0.0395479202271
i:1688 use minpy:0.00597596168518
acceleration:6.61783363256
float64 : (1689, 1689) matmul (1689, 1689)
i:1689 use numpy:0.0515179634094
i:1689 use minpy:0.00577402114868
acceleration:8.92237178958
float64 : (1690, 1690) matmul (1690, 1690)
i:1690 use numpy:0.0348868370056
i:1690 use minpy:0.00593209266663
acceleration:5.88103372051
float64 : (1691, 1691) matmul (1691, 1691)
i:1691 use numpy:0.0442268848419
i:1691 use minpy:0.00598978996277
acceleration:7.38371213629
float64 : (1692, 1692) matmul (1692, 1692)
i:1692 use numpy:0.0399150848389
i:1692 use minpy:0.00577116012573
acceleration:6.91630174337
float64 : (1693, 1693) matmul (1693, 1693)
i:1693 use numpy:0.0690999031067
i:1693 use minpy:0.00581407546997
acceleration:11.8849339785
float64 : (1694, 1694) matmul (1694, 1694)
i:1694 use numpy:0.0408391952515
i:1694 use minpy:0.00603699684143
acceleration:6.76481971486
float64 : (1695, 1695) matmul (1695, 1695)
i:1695 use numpy:0.0378451347351
i:1695 use minpy:0.00579404830933
acceleration:6.53172578389
float64 : (1696, 1696) matmul (1696, 1696)
i:1696 use numpy:0.0398449897766
i:1696 use minpy:0.00595903396606
acceleration:6.68648475634
float64 : (1697, 1697) matmul (1697, 1697)
i:1697 use numpy:0.0436229705811
i:1697 use minpy:0.00701689720154
acceleration:6.2168461826
float64 : (1698, 1698) matmul (1698, 1698)
i:1698 use numpy:0.0345749855042
i:1698 use minpy:0.00601196289062
acceleration:5.75103109137
float64 : (1699, 1699) matmul (1699, 1699)
i:1699 use numpy:0.0360419750214
i:1699 use minpy:0.00585699081421
acceleration:6.15366767076
float64 : (1700, 1700) matmul (1700, 1700)
i:1700 use numpy:0.0403921604156
i:1700 use minpy:0.0060510635376
acceleration:6.67521670607
float64 : (1701, 1701) matmul (1701, 1701)
i:1701 use numpy:0.0348930358887
i:1701 use minpy:0.00584387779236
acceleration:5.97087022153
float64 : (1702, 1702) matmul (1702, 1702)
i:1702 use numpy:0.0352818965912
i:1702 use minpy:0.0058491230011
acceleration:6.03199771736
float64 : (1703, 1703) matmul (1703, 1703)
i:1703 use numpy:0.0414140224457
i:1703 use minpy:0.00602293014526
acceleration:6.8760589027
float64 : (1704, 1704) matmul (1704, 1704)
i:1704 use numpy:0.0429298877716
i:1704 use minpy:0.0059380531311
acceleration:7.22962338392
float64 : (1705, 1705) matmul (1705, 1705)
i:1705 use numpy:0.0383701324463
i:1705 use minpy:0.0058810710907
acceleration:6.52434426562
float64 : (1706, 1706) matmul (1706, 1706)
i:1706 use numpy:0.0410940647125
i:1706 use minpy:0.00612998008728
acceleration:6.70378437245
float64 : (1707, 1707) matmul (1707, 1707)
i:1707 use numpy:0.0363099575043
i:1707 use minpy:0.00598812103271
acceleration:6.06366459627
float64 : (1708, 1708) matmul (1708, 1708)
i:1708 use numpy:0.0356550216675
i:1708 use minpy:0.00590300559998
acceleration:6.04014701725
float64 : (1709, 1709) matmul (1709, 1709)
i:1709 use numpy:0.042160987854
i:1709 use minpy:0.006343126297
acceleration:6.64672054125
float64 : (1710, 1710) matmul (1710, 1710)
i:1710 use numpy:0.0355460643768
i:1710 use minpy:0.00603103637695
acceleration:5.89385673624
float64 : (1711, 1711) matmul (1711, 1711)
i:1711 use numpy:0.0369651317596
i:1711 use minpy:0.00602197647095
acceleration:6.13837200095
float64 : (1712, 1712) matmul (1712, 1712)
i:1712 use numpy:0.0428509712219
i:1712 use minpy:0.00610303878784
acceleration:7.02125166029
float64 : (1713, 1713) matmul (1713, 1713)
i:1713 use numpy:0.036456823349
i:1713 use minpy:0.00647306442261
acceleration:5.63208103131
float64 : (1714, 1714) matmul (1714, 1714)
i:1714 use numpy:0.0423300266266
i:1714 use minpy:0.00605201721191
acceleration:6.9943665301
float64 : (1715, 1715) matmul (1715, 1715)
i:1715 use numpy:0.042093038559
i:1715 use minpy:0.006108045578
acceleration:6.89140872009
float64 : (1716, 1716) matmul (1716, 1716)
i:1716 use numpy:0.0358648300171
i:1716 use minpy:0.00599098205566
acceleration:5.9864692773
float64 : (1717, 1717) matmul (1717, 1717)
i:1717 use numpy:0.0430269241333
i:1717 use minpy:0.00602698326111
acceleration:7.13904822184
float64 : (1718, 1718) matmul (1718, 1718)
i:1718 use numpy:0.0560147762299
i:1718 use minpy:0.00622916221619
acceleration:8.99234508363
float64 : (1719, 1719) matmul (1719, 1719)
i:1719 use numpy:0.041216135025
i:1719 use minpy:0.00655007362366
acceleration:6.29246896953
float64 : (1720, 1720) matmul (1720, 1720)
i:1720 use numpy:0.0361499786377
i:1720 use minpy:0.00610589981079
acceleration:5.92049980476
float64 : (1721, 1721) matmul (1721, 1721)
i:1721 use numpy:0.0444369316101
i:1721 use minpy:0.00619292259216
acceleration:7.17543792108
float64 : (1722, 1722) matmul (1722, 1722)
i:1722 use numpy:0.110757112503
i:1722 use minpy:0.00600385665894
acceleration:18.4476610277
float64 : (1723, 1723) matmul (1723, 1723)
i:1723 use numpy:0.0405790805817
i:1723 use minpy:0.00699615478516
acceleration:5.8001976554
float64 : (1724, 1724) matmul (1724, 1724)
i:1724 use numpy:0.0498058795929
i:1724 use minpy:0.00677990913391
acceleration:7.34609839294
float64 : (1725, 1725) matmul (1725, 1725)
i:1725 use numpy:0.0349769592285
i:1725 use minpy:0.00599980354309
acceleration:5.82968408504
float64 : (1726, 1726) matmul (1726, 1726)
i:1726 use numpy:0.0347108840942
i:1726 use minpy:0.00602698326111
acceleration:5.75924680565
float64 : (1727, 1727) matmul (1727, 1727)
i:1727 use numpy:0.0460720062256
i:1727 use minpy:0.00628399848938
acceleration:7.33163865387
float64 : (1728, 1728) matmul (1728, 1728)
i:1728 use numpy:0.0350158214569
i:1728 use minpy:0.00625991821289
acceleration:5.59365478367
float64 : (1729, 1729) matmul (1729, 1729)
i:1729 use numpy:0.0346891880035
i:1729 use minpy:0.00609397888184
acceleration:5.69237089202
float64 : (1730, 1730) matmul (1730, 1730)
i:1730 use numpy:0.0403339862823
i:1730 use minpy:0.00620007514954
acceleration:6.50540280715
float64 : (1731, 1731) matmul (1731, 1731)
i:1731 use numpy:0.0348601341248
i:1731 use minpy:0.00608086585999
acceleration:5.73275828269
float64 : (1732, 1732) matmul (1732, 1732)
i:1732 use numpy:0.0349159240723
i:1732 use minpy:0.00600504875183
acceleration:5.81442807798
float64 : (1733, 1733) matmul (1733, 1733)
i:1733 use numpy:0.0502581596375
i:1733 use minpy:0.0061948299408
acceleration:8.11291998614
float64 : (1734, 1734) matmul (1734, 1734)
i:1734 use numpy:0.0485060214996
i:1734 use minpy:0.00617909431458
acceleration:7.85002122159
float64 : (1735, 1735) matmul (1735, 1735)
i:1735 use numpy:0.0351440906525
i:1735 use minpy:0.00612115859985
acceleration:5.74141154475
float64 : (1736, 1736) matmul (1736, 1736)
i:1736 use numpy:0.0438749790192
i:1736 use minpy:0.00622701644897
acceleration:7.04590703729
float64 : (1737, 1737) matmul (1737, 1737)
i:1737 use numpy:0.0355079174042
i:1737 use minpy:0.00614213943481
acceleration:5.7810340812
float64 : (1738, 1738) matmul (1738, 1738)
i:1738 use numpy:0.0372521877289
i:1738 use minpy:0.00613403320312
acceleration:6.07303327114
float64 : (1739, 1739) matmul (1739, 1739)
i:1739 use numpy:0.0452711582184
i:1739 use minpy:0.00627303123474
acceleration:7.21679145605
float64 : (1740, 1740) matmul (1740, 1740)
i:1740 use numpy:0.043004989624
i:1740 use minpy:0.00631713867188
acceleration:6.80766908213
float64 : (1741, 1741) matmul (1741, 1741)
i:1741 use numpy:0.0448260307312
i:1741 use minpy:0.00609397888184
acceleration:7.35579029734
float64 : (1742, 1742) matmul (1742, 1742)
i:1742 use numpy:0.0664539337158
i:1742 use minpy:0.012139081955
acceleration:5.47437886674
float64 : (1743, 1743) matmul (1743, 1743)
i:1743 use numpy:0.0361218452454
i:1743 use minpy:0.00612998008728
acceleration:5.8926529501
float64 : (1744, 1744) matmul (1744, 1744)
i:1744 use numpy:0.0428991317749
i:1744 use minpy:0.0073299407959
acceleration:5.85258912308
float64 : (1745, 1745) matmul (1745, 1745)
i:1745 use numpy:0.0422780513763
i:1745 use minpy:0.0063681602478
acceleration:6.63897416698
float64 : (1746, 1746) matmul (1746, 1746)
i:1746 use numpy:0.0602841377258
i:1746 use minpy:0.0278899669647
acceleration:2.16149907248
float64 : (1747, 1747) matmul (1747, 1747)
i:1747 use numpy:0.0362319946289
i:1747 use minpy:0.00615477561951
acceleration:5.88680999419
float64 : (1748, 1748) matmul (1748, 1748)
i:1748 use numpy:0.0511338710785
i:1748 use minpy:0.00636100769043
acceleration:8.03864317841
float64 : (1749, 1749) matmul (1749, 1749)
i:1749 use numpy:0.0361380577087
i:1749 use minpy:0.0062038898468
acceleration:5.82506437108
float64 : (1750, 1750) matmul (1750, 1750)
i:1750 use numpy:0.0361731052399
i:1750 use minpy:0.00632214546204
acceleration:5.7216502621
float64 : (1751, 1751) matmul (1751, 1751)
i:1751 use numpy:0.042062997818
i:1751 use minpy:0.00645089149475
acceleration:6.52049377241
float64 : (1752, 1752) matmul (1752, 1752)
i:1752 use numpy:0.0360949039459
i:1752 use minpy:0.00617003440857
acceleration:5.85003284516
float64 : (1753, 1753) matmul (1753, 1753)
i:1753 use numpy:0.0372450351715
i:1753 use minpy:0.00632882118225
acceleration:5.88498775664
float64 : (1754, 1754) matmul (1754, 1754)
i:1754 use numpy:0.0432918071747
i:1754 use minpy:0.00646996498108
acceleration:6.69119652135
float64 : (1755, 1755) matmul (1755, 1755)
i:1755 use numpy:0.0382039546967
i:1755 use minpy:0.00626420974731
acceleration:6.09876684174
float64 : (1756, 1756) matmul (1756, 1756)
i:1756 use numpy:0.0374300479889
i:1756 use minpy:0.00627183914185
acceleration:5.96795407892
float64 : (1757, 1757) matmul (1757, 1757)
i:1757 use numpy:0.043112039566
i:1757 use minpy:0.00636601448059
acceleration:6.77221826898
float64 : (1758, 1758) matmul (1758, 1758)
i:1758 use numpy:0.0394260883331
i:1758 use minpy:0.00632286071777
acceleration:6.2354826546
float64 : (1759, 1759) matmul (1759, 1759)
i:1759 use numpy:0.0374748706818
i:1759 use minpy:0.00631308555603
acceleration:5.93606254013
float64 : (1760, 1760) matmul (1760, 1760)
i:1760 use numpy:0.043918132782
i:1760 use minpy:0.00656890869141
acceleration:6.68575783972
float64 : (1761, 1761) matmul (1761, 1761)
i:1761 use numpy:0.0377027988434
i:1761 use minpy:0.0063841342926
acceleration:5.90570265526
float64 : (1762, 1762) matmul (1762, 1762)
i:1762 use numpy:0.0380058288574
i:1762 use minpy:0.00634694099426
acceleration:5.98805454341
float64 : (1763, 1763) matmul (1763, 1763)
i:1763 use numpy:0.0436148643494
i:1763 use minpy:0.0063750743866
acceleration:6.84146751935
float64 : (1764, 1764) matmul (1764, 1764)
i:1764 use numpy:0.038074016571
i:1764 use minpy:0.0063111782074
acceleration:6.03279060104
float64 : (1765, 1765) matmul (1765, 1765)
i:1765 use numpy:0.0383648872375
i:1765 use minpy:0.0062780380249
acceleration:6.11096764393
float64 : (1766, 1766) matmul (1766, 1766)
i:1766 use numpy:0.0456171035767
i:1766 use minpy:0.00642418861389
acceleration:7.10083503433
float64 : (1767, 1767) matmul (1767, 1767)
i:1767 use numpy:0.0380699634552
i:1767 use minpy:0.00637197494507
acceleration:5.97459402829
float64 : (1768, 1768) matmul (1768, 1768)
i:1768 use numpy:0.0388569831848
i:1768 use minpy:0.00632095336914
acceleration:6.14732951116
float64 : (1769, 1769) matmul (1769, 1769)
i:1769 use numpy:0.0441780090332
i:1769 use minpy:0.0064799785614
acceleration:6.81761654218
float64 : (1770, 1770) matmul (1770, 1770)
i:1770 use numpy:0.0386080741882
i:1770 use minpy:0.00633597373962
acceleration:6.09347130762
float64 : (1771, 1771) matmul (1771, 1771)
i:1771 use numpy:0.0392289161682
i:1771 use minpy:0.00639510154724
acceleration:6.13421317526
float64 : (1772, 1772) matmul (1772, 1772)
i:1772 use numpy:0.0440540313721
i:1772 use minpy:0.00656604766846
acceleration:6.70936819172
float64 : (1773, 1773) matmul (1773, 1773)
i:1773 use numpy:0.0460920333862
i:1773 use minpy:0.00777316093445
acceleration:5.92963837684
float64 : (1774, 1774) matmul (1774, 1774)
i:1774 use numpy:0.0418789386749
i:1774 use minpy:0.00630688667297
acceleration:6.64019203871
float64 : (1775, 1775) matmul (1775, 1775)
i:1775 use numpy:0.0490958690643
i:1775 use minpy:0.00656604766846
acceleration:7.47723311547
float64 : (1776, 1776) matmul (1776, 1776)
i:1776 use numpy:0.0449800491333
i:1776 use minpy:0.00647306442261
acceleration:6.94880294659
float64 : (1777, 1777) matmul (1777, 1777)
i:1777 use numpy:0.0385718345642
i:1777 use minpy:0.00645804405212
acceleration:5.9726806217
float64 : (1778, 1778) matmul (1778, 1778)
i:1778 use numpy:0.0441918373108
i:1778 use minpy:0.00654792785645
acceleration:6.74898048354
float64 : (1779, 1779) matmul (1779, 1779)
i:1779 use numpy:0.0389969348907
i:1779 use minpy:0.00644183158875
acceleration:6.05370294978
float64 : (1780, 1780) matmul (1780, 1780)
i:1780 use numpy:0.0390419960022
i:1780 use minpy:0.00638318061829
acceleration:6.11638591118
float64 : (1781, 1781) matmul (1781, 1781)
i:1781 use numpy:0.0476520061493
i:1781 use minpy:0.00673604011536
acceleration:7.07418681202
float64 : (1782, 1782) matmul (1782, 1782)
i:1782 use numpy:0.0387148857117
i:1782 use minpy:0.0064549446106
acceleration:5.99770998005
float64 : (1783, 1783) matmul (1783, 1783)
i:1783 use numpy:0.0413398742676
i:1783 use minpy:0.00673699378967
acceleration:6.13624942492
float64 : (1784, 1784) matmul (1784, 1784)
i:1784 use numpy:0.04509806633
i:1784 use minpy:0.00674700737
acceleration:6.68415845083
float64 : (1785, 1785) matmul (1785, 1785)
i:1785 use numpy:0.0594019889832
i:1785 use minpy:0.00638890266418
acceleration:9.29768257641
float64 : (1786, 1786) matmul (1786, 1786)
i:1786 use numpy:0.0396409034729
i:1786 use minpy:0.00646090507507
acceleration:6.1355031551
float64 : (1787, 1787) matmul (1787, 1787)
i:1787 use numpy:0.0490050315857
i:1787 use minpy:0.00658798217773
acceleration:7.43854950782
float64 : (1788, 1788) matmul (1788, 1788)
i:1788 use numpy:0.0394198894501
i:1788 use minpy:0.0065279006958
acceleration:6.03867786706
float64 : (1789, 1789) matmul (1789, 1789)
i:1789 use numpy:0.0399231910706
i:1789 use minpy:0.00645613670349
acceleration:6.18375863215
float64 : (1790, 1790) matmul (1790, 1790)
i:1790 use numpy:0.0459921360016
i:1790 use minpy:0.00668001174927
acceleration:6.88503818974
float64 : (1791, 1791) matmul (1791, 1791)
i:1791 use numpy:0.0396990776062
i:1791 use minpy:0.00651907920837
acceleration:6.08967560253
float64 : (1792, 1792) matmul (1792, 1792)
i:1792 use numpy:0.0410439968109
i:1792 use minpy:0.00654220581055
acceleration:6.2737244898
float64 : (1793, 1793) matmul (1793, 1793)
i:1793 use numpy:0.04660820961
i:1793 use minpy:0.00670218467712
acceleration:6.95418163708
float64 : (1794, 1794) matmul (1794, 1794)
i:1794 use numpy:0.040403842926
i:1794 use minpy:0.00650691986084
acceleration:6.2093653818
float64 : (1795, 1795) matmul (1795, 1795)
i:1795 use numpy:0.0402460098267
i:1795 use minpy:0.00646018981934
acceleration:6.22984942427
float64 : (1796, 1796) matmul (1796, 1796)
i:1796 use numpy:0.047639131546
i:1796 use minpy:0.00703310966492
acceleration:6.77355164582
float64 : (1797, 1797) matmul (1797, 1797)
i:1797 use numpy:0.0405647754669
i:1797 use minpy:0.00715899467468
acceleration:5.66626702634
float64 : (1798, 1798) matmul (1798, 1798)
i:1798 use numpy:0.0437371730804
i:1798 use minpy:0.00655698776245
acceleration:6.67031488619
float64 : (1799, 1799) matmul (1799, 1799)
i:1799 use numpy:0.0525329113007
i:1799 use minpy:0.00664210319519
acceleration:7.90907785635
float64 : (1800, 1800) matmul (1800, 1800)
i:1800 use numpy:0.0692911148071
i:1800 use minpy:0.00716209411621
acceleration:9.67470039947
float64 : (1801, 1801) matmul (1801, 1801)
i:1801 use numpy:0.0411839485168
i:1801 use minpy:0.00644993782043
acceleration:6.38516985177
float64 : (1802, 1802) matmul (1802, 1802)
i:1802 use numpy:0.0476639270782
i:1802 use minpy:0.00668597221375
acceleration:7.12894483472
float64 : (1803, 1803) matmul (1803, 1803)
i:1803 use numpy:0.0420558452606
i:1803 use minpy:0.00662994384766
acceleration:6.34331846951
float64 : (1804, 1804) matmul (1804, 1804)
i:1804 use numpy:0.0412690639496
i:1804 use minpy:0.00649976730347
acceleration:6.34931406353
float64 : (1805, 1805) matmul (1805, 1805)
i:1805 use numpy:0.0481860637665
i:1805 use minpy:0.00678014755249
acceleration:7.10693438357
float64 : (1806, 1806) matmul (1806, 1806)
i:1806 use numpy:0.0415308475494
i:1806 use minpy:0.00663805007935
acceleration:6.25648301128
float64 : (1807, 1807) matmul (1807, 1807)
i:1807 use numpy:0.0417430400848
i:1807 use minpy:0.00671315193176
acceleration:6.21809851902
float64 : (1808, 1808) matmul (1808, 1808)
i:1808 use numpy:0.0474419593811
i:1808 use minpy:0.00681805610657
acceleration:6.95828233731
float64 : (1809, 1809) matmul (1809, 1809)
i:1809 use numpy:0.0429780483246
i:1809 use minpy:0.00652599334717
acceleration:6.58567148911
float64 : (1810, 1810) matmul (1810, 1810)
i:1810 use numpy:0.0414290428162
i:1810 use minpy:0.0066351890564
acceleration:6.24383758534
float64 : (1811, 1811) matmul (1811, 1811)
i:1811 use numpy:0.105635166168
i:1811 use minpy:0.00774383544922
acceleration:13.6411945813
float64 : (1812, 1812) matmul (1812, 1812)
i:1812 use numpy:0.0434668064117
i:1812 use minpy:0.00669813156128
acceleration:6.4893927529
float64 : (1813, 1813) matmul (1813, 1813)
i:1813 use numpy:0.0425519943237
i:1813 use minpy:0.00688886642456
acceleration:6.17692254447
float64 : (1814, 1814) matmul (1814, 1814)
i:1814 use numpy:0.0489439964294
i:1814 use minpy:0.00688195228577
acceleration:7.11193486922
float64 : (1815, 1815) matmul (1815, 1815)
i:1815 use numpy:0.0440740585327
i:1815 use minpy:0.00685787200928
acceleration:6.42678347935
float64 : (1816, 1816) matmul (1816, 1816)
i:1816 use numpy:0.0413329601288
i:1816 use minpy:0.00667405128479
acceleration:6.19308398528
float64 : (1817, 1817) matmul (1817, 1817)
i:1817 use numpy:0.0566780567169
i:1817 use minpy:0.0076310634613
acceleration:7.42728153216
float64 : (1818, 1818) matmul (1818, 1818)
i:1818 use numpy:0.0436642169952
i:1818 use minpy:0.00670909881592
acceleration:6.50820895522
float64 : (1819, 1819) matmul (1819, 1819)
i:1819 use numpy:0.0413310527802
i:1819 use minpy:0.00666189193726
acceleration:6.2041013528
float64 : (1820, 1820) matmul (1820, 1820)
i:1820 use numpy:0.0477669239044
i:1820 use minpy:0.00810980796814
acceleration:5.89001910922
float64 : (1821, 1821) matmul (1821, 1821)
i:1821 use numpy:0.0449199676514
i:1821 use minpy:0.00670123100281
acceleration:6.70324118547
float64 : (1822, 1822) matmul (1822, 1822)
i:1822 use numpy:0.0621290206909
i:1822 use minpy:0.0233550071716
acceleration:2.66020131077
float64 : (1823, 1823) matmul (1823, 1823)
i:1823 use numpy:0.0520181655884
i:1823 use minpy:0.0069899559021
acceleration:7.44184460059
float64 : (1824, 1824) matmul (1824, 1824)
i:1824 use numpy:0.0437920093536
i:1824 use minpy:0.00683307647705
acceleration:6.40882763433
float64 : (1825, 1825) matmul (1825, 1825)
i:1825 use numpy:0.0420758724213
i:1825 use minpy:0.00665998458862
acceleration:6.31771318107
float64 : (1826, 1826) matmul (1826, 1826)
i:1826 use numpy:0.0479559898376
i:1826 use minpy:0.00687599182129
acceleration:6.97441054092
float64 : (1827, 1827) matmul (1827, 1827)
i:1827 use numpy:0.0415940284729
i:1827 use minpy:0.00674486160278
acceleration:6.16677271121
float64 : (1828, 1828) matmul (1828, 1828)
i:1828 use numpy:0.0418651103973
i:1828 use minpy:0.0068678855896
acceleration:6.09577865722
float64 : (1829, 1829) matmul (1829, 1829)
i:1829 use numpy:0.048033952713
i:1829 use minpy:0.00796103477478
acceleration:6.033

你可能感兴趣的:(python,Deep,Learning,CUDA,人工智能,深度学习)