CVPR2018论文

转载:https://www.cnblogs.com/feifanrensheng/p/9153023.html

CVPR2018资源汇总

CVPR 2018大会将于2018618~22日于美国犹他州的盐湖城(Salt Lake City)举办。

CVPR2018论文集下载:http://openaccess.thecvf.com/menu.py

 

目前CVPR2018论文还不能打包下载,但可以看到收录论文标题的清单,感兴趣的可以自行google/baidu下载

详细可以点击链接:https://github.com/amusi/daily-paper-computer-vision/blob/master/2018/cvpr2018-paper-list.csv

 

cvpr2018论文解读集锦

https://zhuanlan.zhihu.com/p/35131736

CVPR 2017 论文解读集锦

http://cvmart.net/community/article/detail/69

ICCV 2017 论文解读集锦

http://cvmart.net/community/article/detail/153

CVPR2018   GAN相关论文汇总

链接:https://zhuanlan.zhihu.com/p/36436452

1. 数目统计:

风格迁移/cycleGAN/domain adaptation 13

去雾/去遮挡/超像素重建/Photo Enhancement 7

GAN优化 6

图像合成 10

人脸相关 7

姿态相关 4

行人重识别 3

其他类 <3

2. 分析:今年GAN的山头还是被domain adaptationCycleGAN相关研究拿下,除此之外,图像合成和视觉病态问题也是GAN应用热点,人脸,行人识别异军突起,说明落地型工作开始增多。剩下几篇都属于挖坑型工作。

 

风格迁移/cycleGAN/domain adaptation

1.PairedCycleGAN: Asymmetric Style Transfer for Applying and Removing Makeup

Huiwen Chang (); Jingwan Lu (Adobe Research); Fisher Yu (UC Berkeley); Adam Finkelstein (Princeton Univ.)

 

2.CartoonGAN: Generative Adversarial Networks for Photo Cartoonization

Yang Chen (Tsinghua Univ.); Yu-Kun Lai (Cardiff Univ.); Yong-Jin Liu ()

 

3.StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi (Korea Univ.); Minje Choi (Korea Univ.); Munyoung Kim (College of New Jersey); Jung-Woo Ha (NAVER); Sunghun Kim (Hong Kong Univ. of Science and Technology); Jaegul Choo (Korea Univ.)

 

4.Generate to Adapt: Aligning Domains Using Generative Adversarial Networks:

Swami Sankaranarayanan (Univ. of Maryland); Yogesh Balaji (Univ. of Maryland); Carlos D. Castillo (); Rama Chellappa (Univ. of Maryland)

 

5.Re-Weighted Adversarial Adaptation Network for Unsupervised Domain Adaptation

Qingchao Chen (Unviersity College London); Yang Liu (Univ. of Cambridge); Zhaowen Wang (Adobe); Ian Wassell (); Kevin Chetty ()

 

6.Multi-Content GAN for Few-Shot Font Style Transfer

Samaneh Azadi (UC Berkeley); Matthew Fisher (Adobe); Vladimir G. Kim (Adobe Research); Zhaowen Wang (Adobe); Eli Shechtman (Adobe Research); Trevor Darrell (UC Berkeley)

 

7.DA-GAN: Instance-Level Image Translation by Deep Attention Generative Adversarial Networks

Shuang Ma (SUNY Buffalo); Jianlong Fu (); Chang Wen Chen (); Tao Mei ()

 

8.Adversarial Feature Augmentation for Unsupervised Domain Adaptation

Riccardo Volpi (Istituto Italiano di Tecnologia); Pietro Morerio (Istituto Italiano di Tecnologia); Silvio Savarese (); Vittorio Murino (Istituto Italiano di Tecnologia)

 

9.Domain Generalization With Adversarial Feature Learning

Haoliang Li (Nanyang Technological Univ.); Sinno Jialin Pan (Nanyang Technological Univ.); Shiqi Wang (City Univ. of Hong Kong); Alex C. Kot ()

 

10Image to Image Translation for Domain Adaptation

Zak Murez (UC San Diego); Soheil Kolouri (HRL Laboratories); David Kriegman (UC San Diego); Ravi Ramamoorthi (UC San Diego); Kyungnam Kim (HRL Laboratories)

 

11.Partial Transfer Learning With Selective Adversarial Networks

Zhangjie Cao (Tsinghua Univ.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang (); Michael I. Jordan (UC Berkeley)

 

12.Duplex Generative Adversarial Network for Unsupervised Domain Adaptation

Lanqing Hu (ICT, CAS); Meina Kan (); Shiguang Shan (Chinese Academy of Sciences); Xilin Chen ()

 

13.Conditional Generative Adversarial Network for Structured Domain Adaptation

 

去雾/去遮挡/超像素重建/Photo Enhancement :

1.Single Image Dehazing via ConditionalGenerative Adversarial Network:

Runde Li (Nanjing Univ. of Science andTechnology ); Jinshan Pan (UC Merced); Zechao Li (Nanjing Univ. of Science andTechnology ); Jinhui Tang ()

 

2.DeblurGAN: Blind Motion DeblurringUsing Conditional Adversarial Networks:

Orest Kupyn (Ukrainian Catholic Univ.);Volodymyr Budzan (Ukrainian Catholic Univ.); Mykola Mykhailych (UkrainianCatholic Univ.); Dmytro Mishkin (Czech Technical Univ.); Jiří Matas ()

 

3.Deep Photo Enhancer: Unpaired Learningfor Image Enhancement From Photographs With GANs:

Yu-Sheng Chen (National Taiwan Univ.);Yu-Ching Wang (National Taiwan Univ.); Man-Hsin Kao (National Taiwan Univ.);Yung-Yu Chuang (National Taiwan Univ.)

 

4.SeGAN: Segmenting and Generating theInvisible:

Kiana Ehsani (Univ. of Washington); RoozbehMottaghi (Allen Institute for AI); Ali Farhadi (Allen Institute for AI, Univ.of Washington)

 

5.Image Blind Denoising With GenerativeAdversarial Network Based Noise Modeling:

Jingwen Chen (Sun Yat-sen Univ.); JiaweiChen (Sun Yat-sen Univ.); Hongyang Chao (Sun Yat-sen Univ.); Ming Yang ()

 

6.Attentive Generative AdversarialNetwork for Raindrop Removal From a Single Image:

Rui Qian (Peking Univ.); Robby T. Tan(Yale-NUS College; National Univ. of Singapore); Wenhan Yang (Peking Univ.);Jiajun Su (Peking Univ.); Jiaying Liu (Peking Univ.)

 

7.Stacked Conditional GenerativeAdversarial Networks for Jointly Learning Shadow Detection and Shadow Removal:

Jifeng Wang (Nanjing Univ. of Science andTechnology); Xiang Li (Nanjing Univ. of Science and Technology); Jian Yang(Nanjing Univ. of Science and Technology)

 

GAN优化:

1.SGAN: An Alternative Training ofGenerative Adversarial Networks:

Tatjana Chavdarova (Idiap and EPFL);François Fleuret (Idiap Research Inst.)

 

2.Multi-Agent Diverse GenerativeAdversarial Networks:

Arnab Ghosh (Univ. of Oxford); VivekaKulharia (Univ. of Oxford); Vinay P. Namboodiri (Indian Inst. of TechnologyKanpur); Philip H.S. Torr (Oxford); Puneet K. Dokania (Univ. of Oxford)

 

3.Generative Adversarial Image SynthesisWith Decision Tree Latent Controller:

Takuhiro Kaneko (NTT); Kaoru Hiramatsu(NTT); Kunio Kashino (NTT)

 

4.Unsupervised Deep GenerativeAdversarial Hashing Network:

Kamran Ghasedi Dizaji (Univ. ofPittsburgh); Feng Zheng (Univ. of Pittsburgh); Najmeh Sadoughi (UT Dallas);Yanhua Yang (Xidian Univ.); Cheng Deng (Xidian Univ.); Heng Huang (Univ. ofPittsburgh)

 

5.Global Versus Localized GenerativeAdversarial Nets:

Guo-Jun Qi (Univ. of Central Florida);Liheng Zhang (Univ. of Central Florida); Hao Hu (Univ. of Central Florida);Marzieh Edraki (Univ. of Central Florida ); Jingdong Wang (Microsoft Research);Xian-Sheng Hua (Microsoft Research)

 

6.GAGAN: Geometry-Aware GenerativeAdversarial Networks:

Jean Kossaifi (Imperial College London);Linh Tran (Imperial College London); Yannis Panagakis (); Maja Pantic (ImperialCollege London)

 

 

图像合成:

1.ST-GAN: Spatial Transformer GenerativeAdversarial Networks for Image Compositing:

Chen-Hsuan Lin (Carnegie Mellon Univ.);Ersin Yumer (Argo AI); Oliver Wang (Adobe); Eli Shechtman (Adobe Research);Simon Lucey ()

 

2.SketchyGAN: Towards Diverse andRealistic Sketch to Image Synthesis:

Wengling Chen (Georgia Inst. ofTechnology); James Hays (Georgia Tech)

 

3.Translating and Segmenting MultimodalMedical Volumes With Cycle- and Shape-Consistency Generative AdversarialNetwork:

Zizhao Zhang (Univ. of Florida); Lin Yang(); Yefeng Zheng (Simens )

 

4.High-Resolution Image Synthesis andSemantic Manipulation With Conditional GANs:

Ting-Chun Wang (NVIDIA); Ming-Yu Liu(NVIDIA); Jun-Yan Zhu (UC Berkeley); Andrew Tao (NVIDIA); Jan Kautz (NVIDIA);Bryan Catanzaro (NVIDIA)

 

5.TextureGAN: Controlling Deep ImageSynthesis With Texture Patches:

Wenqi Xian (); Patsorn Sangkloy (GeorgiaInst. of Technology); Varun Agrawal (); Amit Raj (Georgia Inst. of Technology);Jingwan Lu (Adobe Research); Chen Fang (Adobe Research); Fisher Yu (UCBerkeley); James Hays (Georgia Tech)

 

6.Eye In-Painting With ExemplarGenerative Adversarial Networks:

Brian Dolhansky (Facebook); Cristian CantonFerrer (Facebook)

 

7.Photographic Text-to-Image SynthesisWith a Hierarchically-Nested Adversarial Network:

Zizhao Zhang (Univ. of Florida); Yuanpu Xie(Univ. of Florida); Lin Yang ()

 

8.Logo Synthesis and Manipulation WithClustered Generative Adversarial Networks:

Alexander Sage (ETH Zürich); Eirikur Agustsson (ETH Zürich); RaduTimofte (ETH Zürich); Luc Van Gool (ETH Zürich)

 

9.Cross-View Image Synthesis UsingConditional GANs:

Krishna Regmi (Univ. of Central Florida);Ali Borji (Univ. of Central Florida)

 

10.AttnGAN: Fine-Grained Text to ImageGeneration With Attentional Generative Adversarial Networks:

Tao Xu (Lehigh Univ.); Pengchuan Zhang ();Qiuyuan Huang (); Han Zhang (Rutgers); Zhe Gan (); Xiaolei Huang (Lehigh );Xiaodong He ()

 

 

人脸相关:

1.Finding Tiny Faces in the Wild WithGenerative Adversarial Network:

Yancheng Bai (KAUST/Iscas); Yongqiang Zhang(Harbin Inst. of Technology/KAUST); Mingli Ding (); Bernard Ghanem ()

 

2.Learning Face Age Progression: APyramid Architecture of GANs:

Hongyu Yang (Beihang Univ.); Di Huang ();Yunhong Wang (); Anil K. Jain (MSU)

 

3.Super-FAN: Integrated Facial LandmarkLocalization and Super-Resolution

of Real-World Low Resolution Faces inArbitrary Poses With GANs:

Adrian Bulat (); Georgios Tzimiropoulos ()

 

4.Face Aging With Identity-PreservedConditional Generative Adversarial Networks:

Zongwei Wang (); Xu Tang (Baidu); WeixinLuo (ShanghaiTech Univ.); Shenghua Gao (ShanghaiTech Univ.)

 

5.Towards Open-Set Identity PreservingFace Synthesis:

Jianmin Bao (Univ. of Science andTechnology of China); Dong Chen (Microsoft Research Asia); Fang Wen ();Houqiang Li (); Gang Hua

(Microsoft Research)

 

6.Weakly Supervised Facial Action UnitRecognition Through Adversarial Training:

Guozhu Peng (Univ. of Science andTechnology of China); Shangfei Wang ()

 

7.FaceID-GAN: Learning a SymmetryThree-Player GAN for Identity-Preserving Face Synthesis:

Yujun Shen (Chinese Univ. of Hong Kong);Ping Luo (Chinese Univ. of Hong Kong); Junjie Yan (); Xiaogang Wang (ChineseUniv. of Hong Kong); Xiaoou Tang (Chinese Univ. of Hong Kong)

 

 

人体姿态相关:

1.GANerated Hands for Real-Time 3D HandTracking From Monocular RGB:

Franziska Mueller (MPI Informatics);Florian Bernard (MPI Informatics); Oleksandr Sotnychenko (MPI Informatics);Dushyant Mehta (MPI Informatics); Srinath Sridhar (); Dan Casas (MPI Informatics);Christian Theobalt (MPI Informatics)

 

2.Multistage Adversarial Losses forPose-Based Human Image Synthesis:

Chenyang Si (Inst. of Automation, ChineseAcademy of Sciences); Wei Wang (); Liang Wang (); Tieniu Tan (NLPR)

 

3.Deformable GANs for Pose-Based HumanImage Generation:

Aliaksandr Siarohin (DISI, Univ. ofTrento); Enver Sangineto (Univ. of Trento); StéphaneLathuilière (INRIA); Nicu Sebe (Univ. of Trento)

 

4.Social GAN: Socially AcceptableTrajectories With Generative Adversarial Networks:

Agrim Gupta (Stanford Univ.); JustinJohnson (Stanford Univ.); Li Fei-Fei (Stanford Univ.); Silvio Savarese ();Alexandre Alahi (EPFL)

 

 

行人重识别:

1.Person Transfer GAN to Bridge DomainGap for Person Re-Identification:

Longhui Wei (Peking Univ.); Shiliang Zhang(Peking Univ.); Wen Gao (); Qi Tian ()

 

2.Disentangled Person Image Generation:

Liqian Ma (KU Leuven); Qianru Sun (MPIInformatics); Stamatios Georgoulis (KU Leuven); Luc Van Gool (KU Leuven); BerntSchiele (MPI Informatics); Mario Fritz (MPI Informatics)

 

3.Image-Image Domain Adaptation WithPreserved Self-Similarity and Domain-Dissimilarity for Person Re-Identification:

Weijian Deng (Univ. of Chinese Academy);Liang Zheng (UT San Antonio); Qixiang Ye (); Guoliang Kang (Univ. of TechnologySydney); Yi Yang (); Jianbin Jiao ()

 

 

目标跟踪:

1.VITAL: VIsual Tracking via AdversarialLearning:

Yibing Song (Tencent AI Lab); Chao Ma ();Xiaohe Wu (Harbin Inst. of Technology); Lijun Gong (City Univ. of Hong Kong);Linchao Bao (Tencent AI Lab); Wangmeng Zuo (Harbin Inst. of Technology);Chunhua Shen (Univ. of Adelaide); Rynson W.H. Lau (City Univ. of Hong Kong);Ming-Hsuan Yang (UC Merced)

 

2.SINT++: Robust Visual Tracking viaAdversarial Positive Instance Generation:

Xiao Wang (Anhui Univ.); Chenglong Li(Anhui Univ.); Bin Luo (); Jin Tang ()

 

 

目标检测:

1.Generative Adversarial LearningTowards Fast Weakly Supervised Detection:

Yunhan Shen (Xiamen Univ.); Rongrong Ji ();Shengchuan Zhang (); Wangmeng Zuo (Harbin Inst. of Technology); Yan Wang(Microsoft)

 

 

特征可解释性:

1.Visual Feature Attribution UsingWasserstein GANs:

Christian F. Baumgartner (ETH Zürich); Lisa M. Koch (ETH Zürich); Kerem CanTezcan (ETH Zürich); Jia Xi Ang (ETH Zürich); Ender Konukoglu (ETH Zürich)

 

 

图像检索:

1.HashGAN: Deep Learning to Hash WithPair Conditional Wasserstein GAN:

Yue Cao (Tsinghua Univ.); Bin Liu (TsinghuaUniv.); Mingsheng Long (Tsinghua Univ.); Jianmin Wang ()

 

 

视频合成:

1.Learning to Generate Time-Lapse VideosUsing Multi-Stage Dynamic Generative Adversarial Networks:

Wei Xiong (Univ. of Rochester); Wenhan Luo(Tencent AI Lab); Lin Ma (Tencent AI Lab); Wei Liu (); Jiebo Luo (Univ. ofRochester)

 

2.MoCoGAN: Decomposing Motion andContent for Video Generation:

Sergey Tulyakov (); Ming-Yu Liu (NVIDIA);Xiaodong Yang (NVIDIA); Jan Kautz (NVIDIA)

你可能感兴趣的:(CVPR2018论文)