遗传算法原理与应用详解

        遗传算法 ( GA , Genetic Algorithm ) ,也称进化算法 。 遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识

   作为遗传算法生物背景的介绍,下面内容了解即可:

  种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

  个体:组成种群的单个生物。

  基因 ( Gene ) :一个遗传因子。

  染色体 ( Chromosome ) :包含一组的基因。

  生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

  遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

  简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变 ( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想

  遗传算法原理与应用详解_第1张图片

      借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。这样进化N代后就很有可能会进化出适应度函数值很高的个体。

  举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取) ;首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

  编码:需要将问题的解编码成字符串的形式才能使用遗传算法。最简单的一种编码方式是二进制编码,即将问题的解编码成二进制位数组的形式。例如,问题的解是整数,那么可以将其编码成二进制位数组的形式。将0-1字符串作为0-1背包问题的解就属于二进制编码。

  遗传算法有3个最基本的操作:选择,交叉,变异。

  选择:选择一些染色体来产生下一代。一种常用的选择策略是 “比例选择”,也就是个体被选中的概率与其适应度函数值成正比。假设群体的个体总数是M,那么那么一个体Xi被选中的概率为f(Xi)/( f(X1) + f(X2) + …….. + f(Xn) ) 。比例选择实现算法就是所谓的“轮盘赌算法”( Roulette Wheel Selection ) ,轮盘赌算法的一个简单的实现如下:

轮盘赌算法
/*
* 按设定的概率,随机选中一个个体
* P[i]表示第i个个体被选中的概率
*/
int RWS()
{
    m = 0;
    r =Random(0,1); //r为0至1的随机数
    for(i=1;i<=N; i++)
    {
            /* 产生的随机数在m~m+P[i]间则认为选中了i
             *  因此i被选中的概率是P[i]
             */
             m = m + P[i];
             if(r<=m) return i;
    }
}

交叉(Crossover):2条染色体交换部分基因,来构造下一代的2条新的染色体。例如:

交叉前:

00000|011100000000|10000

11100|000001111110|00101

交叉后:

00000|000001111110|10000

11100|011100000000|00101

染色体交叉是以一定的概率发生的,这个概率记为Pc 。

变异(Mutation):在繁殖过程,新产生的染色体中的基因会以一定的概率出错,称为变异。变异发生的概率记为Pm 。例如:

变异前:

000001110000000010000

变异后:

000001110000100010000

适应度函数 ( Fitness Function ):用于评价某个染色体的适应度,用f(x)表示。有时需要区分染色体的适应度函数与问题的目标函数。例如:0-1背包问题的目标函数是所取得物品价值,但将物品价值作为染色体的适应度函数可能并不一定适合。适应度函数与目标函数是正相关的,可对目标函数作一些变形来得到适应度函数。

三.基本遗传算法的代码

        说明:求取x[1]^2-x[1]*x[2]+x[3]的最大值,工程下的gadata.txt里面每一行分别代表x[1]、x[2]和x[3]的范围,输出结果在工程下的galog.txt里面。初始种群规模、最大迭代次数、交叉概率、变异概率等详见代码。

/**************************************************************************/
/* This is a simple genetic algorithm implementation where the */
/* evaluation function takes positive values only and the      */
/* fitness of an individual is the same as the value of the    */
/* objective function                                          */
/**************************************************************************/

#include 
#include 
#include 

/* Change any of these parameters to match your needs */

#define POPSIZE 50               /* population size */
#define MAXGENS 1000             /* max. number of generations */
#define NVARS 3                  /* no. of problem variables */     //gadata.txt中有3行数据,可以给定3组不同范围的数据
#define PXOVER 0.8               /* probability of crossover */
#define PMUTATION 0.15           /* probability of mutation */
#define TRUE 1
#define FALSE 0

int generation;                  /* current generation no. */
int cur_best;                    /* best individual */
FILE *galog;                     /* an output file */

struct genotype /* genotype (GT), a member of the population */
{
	double gene[NVARS];        /* a string of variables */ 
	double fitness;            /* GT's fitness */
	double upper[NVARS];       /* GT's variables upper bound */
	double lower[NVARS];       /* GT's variables lower bound */
	double rfitness;           /* relative fitness */
	double cfitness;           /* cumulative fitness */
};

struct genotype population[POPSIZE+1];    /* population */
struct genotype newpopulation[POPSIZE+1]; /* new population; */
/* replaces the */
/* old generation */

/* Declaration of procedures used by this genetic algorithm */

void initialize(void);
double randval(double, double);
void evaluate(void);
void keep_the_best(void);
void elitist(void);
void select(void);
void crossover(void);
void Xover(int,int);
void swap(double *, double *);
void mutate(void);
void report(void);

/***************************************************************/
/* Initialization function: Initializes the values of genes    */
/* within the variables bounds. It also initializes (to zero)  */
/* all fitness values for each member of the population. It    */
/* reads upper and lower bounds of each variable from the      */
/* input file `gadata.txt'. It randomly generates values       */
/* between these bounds for each gene of each genotype in the  */
/* population. The format of the input file `gadata.txt' is    */
/* var1_lower_bound var1_upper bound                           */
/* var2_lower_bound var2_upper bound ...                       */
/***************************************************************/

void initialize(void)
{
	FILE *infile;
	int i, j;
	double lbound, ubound;
	
	if ((infile = fopen("gadata.txt","r"))==NULL)
	{
		fprintf(galog,"\nCannot open input file!\n");
		exit(1);
	}
	
	/* initialize variables within the bounds */
	
	for (i = 0; i < NVARS; i++)
	{
		fscanf(infile, "%lf",&lbound);
		fscanf(infile, "%lf",&ubound);
		
		for (j = 0; j < POPSIZE; j++)
		{
			population[j].fitness = 0;
			population[j].rfitness = 0;
			population[j].cfitness = 0;
			population[j].lower[i] = lbound;
			population[j].upper[i]= ubound;
			population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);
		}
	}
	
	fclose(infile);
}

/***********************************************************/
/* Random value generator: Generates a value within bounds */
/***********************************************************/

double randval(double low, double high)
{
	double val;
	val = ((double)(rand()%1000)/1000.0)*(high - low) + low;
	return(val);
}

/*************************************************************/
/* Evaluation function: This takes a user defined function.  */
/* Each time this is changed, the code has to be recompiled. */
/* The current function is:  x[1]^2-x[1]*x[2]+x[3]           */
/*************************************************************/

void evaluate(void)
{
	int mem;
	int i;
	double x[NVARS+1];
	
	for (mem = 0; mem < POPSIZE; mem++)
	{
		for (i = 0; i < NVARS; i++)
            x[i+1] = population[mem].gene[i];
		
		population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];  //利用自定义函数求适应度
	}
}

/***************************************************************/
/* Keep_the_best function: This function keeps track of the    */
/* best member of the population. Note that the last entry in  */
/* the array Population holds a copy of the best individual    */
/***************************************************************/

void keep_the_best()
{
	int mem;
	int i;
	cur_best = 0; /* stores the index of the best individual */
	
	for (mem = 0; mem < POPSIZE; mem++)
	{
		if (population[mem].fitness > population[POPSIZE].fitness)
		{
            cur_best = mem;
            population[POPSIZE].fitness = population[mem].fitness;  //population[50]存放最好的fitness
		}
	}
	/* once the best member in the population is found, copy the genes */
	for (i = 0; i < NVARS; i++)
		population[POPSIZE].gene[i] = population[cur_best].gene[i]; //population[50]存放最好的gene
}

/****************************************************************/
/* Elitist function: The best member of the previous generation */
/* is stored as the last in the array. If the best member of    */
/* the current generation is worse then the best member of the  */
/* previous generation, the latter one would replace the worst  */
/* member of the current population                             */
/****************************************************************/

void elitist()
{
	int i;
	double best, worst;             /* best and worst fitness values */
	int best_mem, worst_mem; /* indexes of the best and worst member */
	
	best = population[0].fitness;
	worst = population[0].fitness;
	for (i = 0; i < POPSIZE - 1; ++i)
	{
		if(population[i].fitness > population[i+1].fitness)
		{     
            if (population[i].fitness >= best)
			{
				best = population[i].fitness;
				best_mem = i;
			}
            if (population[i+1].fitness <= worst)
			{
				worst = population[i+1].fitness;
				worst_mem = i + 1;
			}
		}
		else
		{
            if (population[i].fitness <= worst)
			{
				worst = population[i].fitness;
				worst_mem = i;
			}
            if (population[i+1].fitness >= best)
			{
				best = population[i+1].fitness;
				best_mem = i + 1;
			}
		}
	}
	/* if best individual from the new population is better than */
	/* the best individual from the previous population, then    */
	/* copy the best from the new population; else replace the   */
	/* worst individual from the current population with the     */
	/* best one from the previous generation                     */
	
	if (best >= population[POPSIZE].fitness)
    {
		for (i = 0; i < NVARS; i++)
			population[POPSIZE].gene[i] = population[best_mem].gene[i];
		population[POPSIZE].fitness = population[best_mem].fitness;
    }
	else
    {
		for (i = 0; i < NVARS; i++)
			population[worst_mem].gene[i] = population[POPSIZE].gene[i];
		population[worst_mem].fitness = population[POPSIZE].fitness;
    }
}
/**************************************************************/
/* Selection function: Standard proportional selection for    */
/* maximization problems incorporating elitist model - makes  */
/* sure that the best member survives                         */
/**************************************************************/

void select(void)
{
	int mem, i,j;
	double sum = 0;
	double p;
	
	/* find total fitness of the population */
	for (mem = 0; mem < POPSIZE; mem++)
	{
		sum += population[mem].fitness;
	}
	
	/* calculate relative fitness */
	for (mem = 0; mem < POPSIZE; mem++)
	{
		population[mem].rfitness =  population[mem].fitness/sum;    //计算相对fitness
	}
		
	/* calculate cumulative fitness */
	population[0].cfitness = population[0].rfitness;
	for (mem = 1; mem < POPSIZE; mem++)
	{
		population[mem].cfitness =  population[mem-1].cfitness + population[mem].rfitness;  //计算累计fitness
	}
	
	/* finally select survivors using cumulative fitness. */	
	for (i = 0; i < POPSIZE; i++)
	{
		p = rand()%1000/1000.0;
		if (p < population[0].cfitness)
            newpopulation[i] = population[0];     
		else
		{
            for (j = 0; j < POPSIZE;j++)     
				if (p >= population[j].cfitness && p 1)
	{
		if(NVARS == 2)
			point = 1;
		else
			point = (rand() % (NVARS - 1)) + 1;
		
		for (i = 0; i < point; i++)
			swap(&population[one].gene[i], &population[two].gene[i]);
		
	}
}

/*************************************************************/
/* Swap: A swap procedure that helps in swapping 2 variables */
/*************************************************************/

void swap(double *x, double *y)
{
	double temp;
	
	temp = *x;
	*x = *y;
	*y = temp;
	
}

/**************************************************************/
/* Mutation: Random uniform mutation. A variable selected for */
/* mutation is replaced by a random value between lower and   */
/* upper bounds of this variable                              */
/**************************************************************/

void mutate(void)
{
	int i, j;
	double lbound, hbound;
	double x;
	
	for (i = 0; i < POPSIZE; i++)
		for (j = 0; j < NVARS; j++)
		{
            x = rand()%1000/1000.0;
            if (x < PMUTATION)
			{
				/* find the bounds on the variable to be mutated */
				lbound = population[i].lower[j];
				hbound = population[i].upper[j]; 
				population[i].gene[j] = randval(lbound, hbound);
			}
		}
}

/***************************************************************/
/* Report function: Reports progress of the simulation. Data   */
/* dumped into the  output file are separated by commas        */
/***************************************************************/

void report(void)
{
	int i;
	double best_val;            /* best population fitness */
	double avg;                 /* avg population fitness */
	double stddev;              /* std. deviation of population fitness */    //偏离、越轨
	double sum_square;          /* sum of square for std. calc */
	double square_sum;          /* square of sum for std. calc */
	double sum;                 /* total population fitness */
	
	sum = 0.0;
	sum_square = 0.0;
	
	for (i = 0; i < POPSIZE; i++)
	{
		sum += population[i].fitness;       //fitness之和
		sum_square += population[i].fitness * population[i].fitness;   //fitness的平方和
	}
	
	avg = sum/(double)POPSIZE;
	square_sum = avg * avg * POPSIZE;
	stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));
	best_val = population[POPSIZE].fitness;   //最大的fitness
	
	fprintf(galog, "\n%5d,      %6.3f, %6.3f, %6.3f \n\n", generation,
		best_val, avg, stddev);
}

/**************************************************************/
/* Main function: Each generation involves selecting the best */
/* members, performing crossover & mutation and then          */
/* evaluating the resulting population, until the terminating */
/* condition is satisfied                                     */
/**************************************************************/

void main(void)
{
	int i;
	
	if ((galog = fopen("galog.txt","w"))==NULL)
	{
		exit(1);
	}
	generation = 0;
	
	fprintf(galog, "\n generation  best  average  standard \n");
	fprintf(galog, " number      value fitness  deviation \n");
	
	//前期三步曲
	initialize();
	evaluate();
	keep_the_best();

	//迭代筛选
	while(generation

四.基本遗传算法优化

  精英主义选择:是基本遗传算法的一种优化。为了防止进化过程中产生的最优解被交叉和变异所破坏,可以将每一代中的最优解原封不动的复制到下一代中。

  插入操作:可在3个基本操作的基础上增加一个插入操作。插入操作将染色体中的某个随机的片段移位到另一个随机的位置。

 

你可能感兴趣的:(C/C++编程)