python数据分析(pandas入门)

1、pandas数据结构之DataFrame

DataFrame生成方式:1、从另一个DataFrame创建。2、从具有二维形状的NumPy数组或数组的复合结构生成。3、使用Series创建。4、从CSV之类文件生成。下面介绍DataFrame的简单用法:

a):读取文件
代码:
from pandas.io.parsers import read_csv
df=read_csv("H:\Python\data\WHO.csv")
print "DataFrame:",df
运行结果(只截取部分):
DataFrame:                       Country  CountryID  Continent  \
0                 Afghanistan          1          1   
1                     Albania          2          2   
2                     Algeria          3          3   
3                     Andorra          4          2   
4                      Angola          5          3   

b):得到形状数据
代码:
print "Shape:",df.shape #大小
print "Length:",len(df)  #长度
结果:
Shape: (202, 358)
Length: 202

c):得到列标题及类型数据
代码:
print "Column Headers",df.columns #得到每列的标题
print "Data type",df.dtypes   #得到每列数据的类型
结果(截取部分)
Column Headers Index([u'Country', u'CountryID', u'Continent',
       u'Adolescent fertility rate (%)', u'Adult literacy rate (%)',
       u'Gross national income per capita (PPP international $)',
       u'Net primary school enrolment ratio female (%)',
       u'Net primary school enrolment ratio male (%)',
       u'Population (in thousands) total',
       u'Population annual growth rate (%)',
       ...
       u'Total_CO2_emissions', u'Total_income', u'Total_reserves',
       u'Trade_balance_goods_and_services', u'Under_five_mortality_from_CME',
       u'Under_five_mortality_from_IHME', u'Under_five_mortality_rate',
       u'Urban_population', u'Urban_population_growth',
       u'Urban_population_pct_of_total'],
      dtype='object', length=358)
Data type Country                                                                             object
CountryID                                                                            int64
Continent                                                                            int64
Adolescent fertility rate (%)                                                      float64
Adult literacy rate (%)                                                            float64
Gross national income per capita (PPP international $)                             float64
Net primary school enrolment ratio female (%)                                      float64
Net primary school enrolment ratio male (%)                                        float64

d):索引
代码:
print "Index:",df.index
结果:
Index: RangeIndex(start=0, stop=202, step=1)

e):values,非数值数据标位nan
代码:
print "Vales:",df.values
结果
Vales: [['Afghanistan' 1L 1L ..., 5740436.0 5.44 22.9]
 ['Albania' 2L 2L ..., 1431793.9 2.21 45.4]
 ['Algeria' 3L 3L ..., 20800000.0 2.61 63.3]
 ..., 
 ['Yemen' 200L 1L ..., 5759120.5 4.37 27.3]
 ['Zambia' 201L 3L ..., 4017411.0 1.95 35.0]
 ['Zimbabwe' 202L 3L ..., 4709965.0 1.9 35.9]]


2、pandas数据结构之Series

pandas的Series数据结构是由不同类型的元素组成的一维数组,该数据结构也具有标签,创建方式有:由Python字典创建;由numpy数组创建;由单个标量值创建。

a):类型。当选中DataFrame的一列时,得到的是一个Series型的数据。
代码:
country_df=df["Country"]
print "Type df:",type(df)
print "Type country_df:",type(country_df)
结果:
Type df: 
Type country_df: 

b):属性。pandas的Series数据结构不仅共享了DataFrame的一些属性,还提供与名称相关的一个属性。
代码:
print "Series Shape:",country_df.shape  #获取列的形状
print "Series index:",country_df.index   #获取索引
print "Series values:",country_df.values  #获取该列的所有值
print "Series name:",country_df.name   #获取列名(标题)
结果:
Series Shape: (202L,)
Series index: RangeIndex(start=0, stop=202, step=1)
Series values: ['Afghanistan' 'Albania' 'Algeria' 'Andorra' 'Angola' 'Antigua and Barbuda'
 'Argentina' 'Armenia' 'Australia' 'Austria' 'Azerbaijan' 'Bahamas'
 'Bahrain' 'Bangladesh' 'Barbados' 'Belarus' 'Belgium' 'Belize' 'Benin'
 'Bermuda' 'Bhutan' 'Bolivia' 'Bosnia and Herzegovina' 'Botswana' 'Brazil'
 'Brunei Darussalam' 'Bulgaria' 'Burkina Faso' 'Burundi' 'Cambodia'
 'Cameroon' 'Canada' 'Cape Verde' 'Central African Republic' 'Chad' 'Chile'
 'China' 'Colombia' 'Comoros' 'Congo, Dem. Rep.' 'Congo, Rep.'
 'Cook Islands' 'Costa Rica' "Cote d'Ivoire" 'Croatia' 'Cuba' 'Cyprus'
 'Czech Republic' 'Denmark' 'Djibouti' 'Dominica' 'Dominican Republic'
 'Ecuador' 'Egypt' 'El Salvador' 'Equatorial Guinea' 'Eritrea' 'Estonia'
 'Ethiopia' 'Fiji' 'Finland' 'France' 'French Polynesia' 'Gabon' 'Gambia'
 'Georgia' 'Germany' 'Ghana' 'Greece' 'Grenada' 'Guatemala' 'Guinea'
 'Guinea-Bissau' 'Guyana' 'Haiti' 'Honduras' 'Hong Kong, China' 'Hungary'
 'Iceland' 'India' 'Indonesia' 'Iran (Islamic Republic of)' 'Iraq'
 'Ireland' 'Israel' 'Italy' 'Jamaica' 'Japan' 'Jordan' 'Kazakhstan' 'Kenya'
 'Kiribati' 'Korea, Dem. Rep.' 'Korea, Rep.' 'Kuwait' 'Kyrgyzstan'
 "Lao People's Democratic Republic" 'Latvia' 'Lebanon' 'Lesotho' 'Liberia'
 'Libyan Arab Jamahiriya' 'Lithuania' 'Luxembourg' 'Macao, China'
 'Macedonia' 'Madagascar' 'Malawi' 'Malaysia' 'Maldives' 'Mali' 'Malta'
 'Marshall Islands' 'Mauritania' 'Mauritius' 'Mexico'
 'Micronesia (Federated States of)' 'Moldova' 'Monaco' 'Mongolia'
 'Montenegro' 'Morocco' 'Mozambique' 'Myanmar' 'Namibia' 'Nauru' 'Nepal'
 'Netherlands' 'Netherlands Antilles' 'New Caledonia' 'New Zealand'
 'Nicaragua' 'Niger' 'Nigeria' 'Niue' 'Norway' 'Oman' 'Pakistan' 'Palau'
 'Panama' 'Papua New Guinea' 'Paraguay' 'Peru' 'Philippines' 'Poland'
 'Portugal' 'Puerto Rico' 'Qatar' 'Romania' 'Russia' 'Rwanda'
 'Saint Kitts and Nevis' 'Saint Lucia' 'Saint Vincent and the Grenadines'
 'Samoa' 'San Marino' 'Sao Tome and Principe' 'Saudi Arabia' 'Senegal'
 'Serbia' 'Seychelles' 'Sierra Leone' 'Singapore' 'Slovakia' 'Slovenia'
 'Solomon Islands' 'Somalia' 'South Africa' 'Spain' 'Sri Lanka' 'Sudan'
 'Suriname' 'Swaziland' 'Sweden' 'Switzerland' 'Syria' 'Taiwan'
 'Tajikistan' 'Tanzania' 'Thailand' 'Timor-Leste' 'Togo' 'Tonga'
 'Trinidad and Tobago' 'Tunisia' 'Turkey' 'Turkmenistan' 'Tuvalu' 'Uganda'
 'Ukraine' 'United Arab Emirates' 'United Kingdom'
 'United States of America' 'Uruguay' 'Uzbekistan' 'Vanuatu' 'Venezuela'
 'Vietnam' 'West Bank and Gaza' 'Yemen' 'Zambia' 'Zimbabwe']
Series name: Country

c):切片。
代码:
print "Last 2 countries:",country_df[-2:] 
print "Last 2 countries type:",type(country_df[-2:])
结果:
Last 2 countries: 200      Zambia
201    Zimbabwe
Name: Country, dtype: object
Last 2 countries type: 


3、利用Pandas查询数据

a):head()和tail()函数:
代码:
sunspots=read_csv("H:\Python\data\sunspots.csv")
print "Head 2:",sunspots.head(2)   #查看前两行
print "Tail 2:",sunspots.tail(2)   #查看后两行
运行结果:
Head 2:          Date  Yearly Mean Total Sunspot Number
0  2016/12/31                              39.8
1  2015/12/31                              69.8
Tail 2:            Date  Yearly Mean Total Sunspot Number
316  1701-12-31                              18.3
317  1700-12-31                               8.3

b):loc函数
代码:
last_date=sunspots.index[-1]
print "Last value:\n",sunspots.loc[last_date]
运行结果:
last_date=sunspots.index[-1]
print "Last value:\n",sunspots.loc[last_date]

4、利用Pandas的DataFrame进行统计计算


pandas的DataFrame数据结构为我们提供了若干统计函数,下面给出部分方法及其简要说明。
方法 说明
describe 这个方法返回描述性统计信息
count 返回非NAN数据项的数量
mad 计算平均绝对偏差,级类似于标准差的一个有力统计工具
median 返回中位数,等价于第50百分位数的值
min 返回最小值
max 返回最大值
mode 返回众数(mod),即一组数据中出现次数最多的变量值
std 返回表示离散度的标准差,即方差的平方根
var 返回方差
skew 返回偏差系数(skewness),该系数表示的是数据分布的对称程度
kurt 这个方法将返回峰太系数,反映数据分布曲线顶端尖峭或扁平程度
代码:
print "Describe:\n",sunspots.describe()
print "Non NaN observations:\n",sunspots.count()
print "MAD:\n",sunspots.mad()
print "Median:\n",sunspots.median()
print "Min:\n",sunspots.min()
print "Max:\n",sunspots.max()
print "Mode:\n",sunspots.mode()
print "Standard Deviation:\n",sunspots.std()
print "Variance:\n",sunspots.var()
print "Skewness:\n",sunspots.skew()
print "Kurtosis:\n",sunspots.kurt()
运行结果:
Describe:
       Yearly Mean Total Sunspot Number
count                        318.000000
mean                          79.193396
std                           61.988788
min                            0.000000
25%                           24.950000
50%                           66.250000
75%                          116.025000
max                          269.300000
Non NaN observations:
Date                                318
Yearly Mean Total Sunspot Number    318
dtype: int64
MAD:
Yearly Mean Total Sunspot Number    50.925104
dtype: float64
Median:
Yearly Mean Total Sunspot Number    66.25
dtype: float64
Min:
Date                                1700-12-31
Yearly Mean Total Sunspot Number             0
dtype: object
Max:
Date                                2016/12/31
Yearly Mean Total Sunspot Number         269.3
dtype: object
Mode:
         Date  Yearly Mean Total Sunspot Number
0  1985/12/31                              18.3
Standard Deviation:
Yearly Mean Total Sunspot Number    61.988788
dtype: float64
Variance:
Yearly Mean Total Sunspot Number    3842.60983
dtype: float64
Skewness:
Yearly Mean Total Sunspot Number    0.808551
dtype: float64
Kurtosis:
Yearly Mean Total Sunspot Number   -0.130045
dtype: float64


5、利用pandas的DataFrame实现数据聚合

a):为numpy的随机数生成器指定种子,以确保重复运行程序时生成的数据不会走样。该数据有4列:
        1、Weather(一个字符串);
2、Food(一个字符串);
3、Price(一个随机浮点数);
4、Number(1~9之间的一个随机整数)。
代码:
import pandas as pd
from numpy.random import seed
from numpy.random import rand
from numpy.random import randint
import numpy as np
seed(42)

#random.rand(n),生成n个0到1间随机数
#random.random_integers(low,high=None,size=None) 生成闭区间[low,high]上离散均匀分布的整数值;若high=None,则取值区间变为[1,low] 
df=pd.DataFrame({'Weather':['cold','hot','cold','hot','cold','hot','cold'],'Food':['soup','soup','icecream','chocolate','icecream','icecream','soup'],
                'Price':10*rand(7),'Number':randint(1,9,size=(7,))})
print df

运行结果:
        Food  Number     Price Weather
0       soup       8  3.745401    cold
1       soup       5  9.507143     hot
2   icecream       4  7.319939    cold
3  chocolate       8  5.986585     hot
4   icecream       8  1.560186    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold

b):通过Weather列为数据分组,然后遍历各组数据
代码:
weather_group=df.groupby('Weather')  #按天气分组
i=0
for name,group in weather_group:
    i=i+1
    print "Group ",i,name
    print group
运行结果:
Group  1 cold
       Food  Number     Price Weather
0      soup       8  3.745401    cold
2  icecream       4  7.319939    cold
4  icecream       8  1.560186    cold
6      soup       6  0.580836    cold
Group  2 hot
        Food  Number     Price Weather
1       soup       5  9.507143     hot
3  chocolate       8  5.986585     hot
5   icecream       3  1.559945     hot

c):变量Weather_group是一种特殊的pandas对象,可由groupby()生成。这个对象为我们提供了聚合函数,下面展示它的用法:
代码:
print "Weather group first:\n",weather_group.first() #展示各组第一行内容
print "Weather group last:\n",weather_group.last()    #展示各组最后一行内容
print "Weather group mean:\n",weather_group.mean()    #计算各组均值
运行结果:
Weather group first:
         Food  Number     Price
Weather                        
cold     soup       8  3.745401
hot      soup       5  9.507143
Weather group last:
             Food  Number     Price
Weather                            
cold         soup       6  0.580836
hot      icecream       3  1.559945
Weather group mean:
           Number     Price
Weather                    
cold     6.500000  3.301591
hot      5.333333  5.684558

d):恰如利用数据库的查询操作那样,也可以针对多列进行分组。
     然后就可以用groups属性来了解所生成的数据组,以及每一组包含的行数:
代码:
wf_group=df.groupby(['Weather','Food'])
print "WF Group:\n",wf_group.groups
运行结果:
WF Group:
{('hot', 'chocolate'): Int64Index([3], dtype='int64'), ('cold', 'icecream'): Int64Index([2, 4], dtype='int64'), ('cold', 'soup'): Int64Index([0, 6], dtype='int64'), ('hot', 'soup'): Int64Index([1], dtype='int64'), ('hot', 'icecream'): Int64Index([5], dtype='int64')}

e):通过agg方法,可以对数据组施加一系列的numpy函数:
代码:
print "WF Aggregated:\n",wf_group.agg([np.mean,np.median])
运行结果:
WF Aggregated:
                  Number            Price          
                    mean median      mean    median
Weather Food                                       
cold    icecream       6      6  4.440063  4.440063
        soup           7      7  2.163119  2.163119
hot     chocolate      8      8  5.986585  5.986585
        icecream       3      3  1.559945  1.559945
        soup           5      5  9.507143  9.507143

6、DataFrame的串联与附加操作

a):数据库中的数据表有内部连接与外部连接两种连接类型。pandas的DataFrame也有类似操作,也可以对数据进行串联和附加。
  函数concat()的作用是串联DataFrame,如可以把一个由3行数据组成的DataFrame与其他行数据行串接,以便重建原DataFrame:
代码:
print "df:3\n",df[:3]
print "Contact Back together:\n",pd.concat([df[:3],df[:3]])
运行结果:
df:3
       Food  Number     Price Weather
0      soup       8  3.745401    cold
1      soup       5  9.507143     hot
2  icecream       4  7.319939    cold
Contact Back together:
       Food  Number     Price Weather
0      soup       8  3.745401    cold
1      soup       5  9.507143     hot
2  icecream       4  7.319939    cold
0      soup       8  3.745401    cold
1      soup       5  9.507143     hot
2  icecream       4  7.319939    cold

b):为了追加数据行,可以使用append函数:
代码:
print "Appending rows:\n",df[3:].append(df[5:])
运行结果:
Appending rows:
        Food  Number     Price Weather
3  chocolate       8  5.986585     hot
4   icecream       8  1.560186    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold

7、连接DataFrames
a)、新建两个CSV文件:dest.csv和tips.csv
代码:
dests=pd.read_csv("H:\Python\data\dest.csv")
tips=pd.read_csv("H:\Python\data\\tips.csv")
print "dests:\n",dests
print "tips:\n",tips
运行结果:
dests:
   EmpNr       Dest
0      5  The Hague
1      3  Amsterdam
2      9  Rotterdam
tips:
   EmpNr  Amount
0      5    10.0
1      9     5.0
2      7     2.5

b):pandas提供的merge函数或DataFrame的join函数实例方法都能实现类似数据库的连接操作数功能。
      pandas支持所有的这些连接类型,这里仅介绍内部连接与完全外部连接。
  •  用merge函数按照员工编号进行连接处理,代码如下:
print "Merge() on key:\n",pd.merge(dests,tips,on='EmpNr')
运行结果:
Merge() on key:
   EmpNr       Dest  Amount
0      5  The Hague    10.0
1      9  Rotterdam     5.0
  • 使用join方法执行连接操作,需要使用后缀来指示左操作对象和右操作对象:
print "Dest join() tips:\n",dests.join(tips,lsuffix='Dest',rsuffix='Tips')
运行结果:
Dest join() tips:
   EmpNrDest       Dest  EmpNrTips  Amount
0          5  The Hague          5    10.0
1          3  Amsterdam          9     5.0
2          9  Rotterdam          7     2.5
  •  用merge()执行内部连接和外部连接时,更显示的方法如下所示:
代码:
print "Inner join with merge():\n",pd.merge(dests,tips,how='inner')   #内连接
print "Outer join with merge():\n",pd.merge(dests,tips,how='outer')   #完全外部连接
运行结果:
Inner join with merge():
   EmpNr       Dest  Amount
0      5  The Hague    10.0
1      9  Rotterdam     5.0
Outer join with merge():
   EmpNr       Dest  Amount
0      5  The Hague    10.0
1      3  Amsterdam     NaN
2      9  Rotterdam     5.0
3      7        NaN     2.5

8、处理缺失数据

a):读取数据。
代码:
df=pd.read_csv("H:\Python\data\WHO.csv")
#print df.head()
df=df[['Country',df.columns[6]]][:2]  #将原df的Country列和第6列组成新DataFrame,并取前两行
print "New df:\n",df
运行结果:
New df:
       Country  Net primary school enrolment ratio female (%)
0  Afghanistan                                            NaN
1      Albania                                           93.0

b):pandas会把缺失的数值标记为NaN,表示None。pandas的isnull()函数可以帮我们检查缺失的数据。
代码:
print "Null Values:\n",pd.isnull(df)  #检查每行缺失的数
print "Not Null Values:\n",pd.notnull(df) #检查非缺失的数
print "Last Column Doubled:\n",2*df[df.columns[-1]] #NAN值乘以一个数后还是NAN
print "Last Column plus NaN:\n",df[df.columns[-1]]+np.nan  #非NAN值加上NAN后变为了NAN
print "Zero filled:\n",df.fillna(0)  #使用0替换NAN
运行结果:
Null Values:
  Country Net primary school enrolment ratio female (%)
0   False                                          True
1   False                                         False
Not Null Values:
  Country Net primary school enrolment ratio female (%)
0    True                                         False
1    True                                          True
Last Column Doubled:
0      NaN
1    186.0
Name: Net primary school enrolment ratio female (%), dtype: float64
Last Column plus NaN:
0   NaN
1   NaN
Name: Net primary school enrolment ratio female (%), dtype: float64
Zero filled:
       Country  Net primary school enrolment ratio female (%)
0  Afghanistan                                            0.0
1      Albania                                           93.0

9、处理日期数据

a):设定从1900年1月1日开始为期42天的时间范围。
代码:
print "Date range:\n",pd.date_range('1/1/1900',periods=42,freq='D')  #42表示天数,D表示使用日频率。如果periods='W',表示42周
运行结果:
Date range:
DatetimeIndex(['1900-01-07', '1900-01-14', '1900-01-21', '1900-01-28',
               '1900-02-04', '1900-02-11', '1900-02-18', '1900-02-25',
               '1900-03-04', '1900-03-11', '1900-03-18', '1900-03-25',
               '1900-04-01', '1900-04-08', '1900-04-15', '1900-04-22',
               '1900-04-29', '1900-05-06', '1900-05-13', '1900-05-20',
               '1900-05-27', '1900-06-03', '1900-06-10', '1900-06-17',
               '1900-06-24', '1900-07-01', '1900-07-08', '1900-07-15',
               '1900-07-22', '1900-07-29', '1900-08-05', '1900-08-12',
               '1900-08-19', '1900-08-26', '1900-09-02', '1900-09-09',
               '1900-09-16', '1900-09-23', '1900-09-30', '1900-10-07',
               '1900-10-14', '1900-10-21'],
              dtype='datetime64[ns]', freq='W-SUN')

b):在pandas中,日期区间是有限制的。pandas的时间戳基于numpy datetime64类型,以纳秒为单位,并且用一个64位整数来表示具体数值。因此,日期有效的时间戳介于1677年至2262年。当然,这些年份也不是所有日期都是有效的。这个时间范围的精确中点是1970年1月1日。这样,1677年1月1日就无法用pandas时间戳定义,而1677年9月30日就可以,下面用代码说明:
代码:
import pandas as pd
import sys
try:
    print "Date range:\n",pd.date_range('1/1/1677',periods=4,frep='D')
except:
    etype,value,_=sys.exc_info()    #获得错误类型,错误值
    print "Error encountered:\n",etype,value  #打印
运行结果:

Date range:
Error encountered:
 Out of bounds nanosecond timestamp: 1677-01-01 00:00:00

b):使用pandas的Dateoffset函数计算允许的日期范围:
代码:
offset=pd.DateOffset(seconds=2**63/10**9)
mid=pd.to_datetime('1/1/1970')
print "Start valid range:\n",mid-offset
print "End valid range:\n",mid+offset
运行结果:
Start valid range:
1677-09-21 00:12:44
End valid range:
2262-04-11 23:47:16

c):pandas可以把一串字符串转化成日期数据:
代码:
print "With format:\n",pd.to_datetime(['1901113','19031230'],format='%Y%m%d')
运行结果:
With format:
DatetimeIndex(['1901-11-03', '1903-12-30'], dtype='datetime64[ns]', freq=None)

d):如果一个字符串明显不是日期,无法转化。可以使用参数coerce设置为True强制转化:
代码:
print "Illegal date:\n",pd.to_datetime(['1901-11-13','not a date'])   #第二个字符串无法转换,运行报错
print "Illegal date:\n",pd.to_datetime(['1901-11-13','not a date'],coerce=True)   #强制转化,得到非时间数NAT
运行结果:
Illegal date:
DatetimeIndex(['1901-11-13', 'NaT'], dtype='datetime64[ns]', freq=None)

10、数据透析表

a):数据透析表可以从一个平面文件中指定的行和列中聚合数据,这种聚合操作可以是求和、求平均值,求标准差等运算。
import pandas as pd
from numpy.random import seed
from numpy.random import rand
from numpy.random import randint 
import numpy as np

seed(42)
N=7
df=pd.DataFrame({'Weather':['cold','hot','cold','hot','cold','hot','cold'],'Food':['soup','soup','icecream','chocolate','icecream','icecream','soup'],
                'Price':10*rand(7),'Number':randint(1,9,size=(7,))})
print "DataFrame:\n",df
print pd.pivot_table(df,index='Food',aggfunc=np.sum) #计算各类型Food的统计值
运行结果:
DataFrame:
        Food  Number     Price Weather
0       soup       8  3.745401    cold
1       soup       5  9.507143     hot
2   icecream       4  7.319939    cold
3  chocolate       8  5.986585     hot
4   icecream       8  1.560186    cold
5   icecream       3  1.559945     hot
6       soup       6  0.580836    cold
           Number      Price
Food                        
chocolate       8   5.986585
icecream       15  10.440071
soup           19  13.833380






















你可能感兴趣的:(python)