title: poj-1151矩形面积并-线段树
date: 2018-10-30 22:35:11
tags:
- acm
- 刷题
categoties: ACM-线段树
概述
线段树问题里的另一个问题,,,矩形面积并,,,,
之前看lazy更新时看到下面这个的讲解,,,一大堆文字还有一大堆的图,,,,当时果断跳过,,,
今天花了一下午加一晚上的时间看了看这块知识,,,然后尝试自己写出代码,,,算是简单的了解一下这块,,,
题意
这道矩形面积并问题的大意是给很多个矩形,,矩形之间可能有交集,,,然后问你这一大片的图形面积是多少,,,,
数据量不大,,看到有很多人是暴力过的,,,
但是用线段树来当作练习题锻炼锻炼思维还是很好的QAQ
思路
一开始我是看这篇博客有关矩形面积并的知识,,,
这篇博客讲解的思路很不错,,,一遍之后大致了解了整个解决问题的思路,,,,但是它没有相应的练习题以及代码,,,,我完全不知道该从哪里下手,,,线段树的具体如何实现一脸懵逼,,,,还有,,,一般这种题都是要将一个方向的坐标 离散化,,,,嗯,,又是这个东西,,,,更是一脸的懵逼,,,,
然后看了这篇博客,,对着代码,,,然后顺着思路写出来了,,,
主要的几点:
- 前面两个博客的图很形象的把思路理了一遍,,,,就是枚举一个方向,,比如y方向,,然后,,将x方向的坐标离散化,,分成若干个 单位线段,,,,线段树维护这个单位线段,,,还是那个博客形象一些
- 整个图形的面积可以分成若干个小的矩形,,,然后加起来就行,,,,
代码
#include
#include
#include
#include
#include
using namespace std;
#define aaa cout << x[r + 1] << "----" << x[l] << endl;
const int maxn = 205;
double x[maxn << 2]; //所有的x的数据
//每一条线段
struct segment
{
double y;
double l;
double r;
int flag; //1 or -1: 入边or出边
segment(){}
segment(double y, double l , double r , int flag):y(y) , l(l) , r(r) , flag(flag){}
bool operator < (const segment &res)
{
return y < res.y;
}
}seg[maxn << 1];
//线段树维护所有的单位线段(离散后的)
struct node
{
int cov;
double len;
}node[maxn << 2];
void pushdown(int rt , int l , int r)
{
if(node[rt].cov)
node[rt].len = x[r + 1] - x[l];
else if(l == r)
node[rt].len = 0;
else
node[rt].len = node[rt << 1].len + node[rt << 1 | 1].len;
}
void update(int rt , int l , int r , int L , int R , int cov)
{
if(L <= l && r <= R)
{
node[rt].cov += cov;
pushdown(rt , l , r);
return;
}
int mid = (l + r) >> 1;
if(L <= mid) update(rt << 1 , l , mid , L , R , cov);
if(R > mid) update(rt << 1 | 1 , mid + 1 , r , L , R , cov);
//pushdown
pushdown(rt , l , r);
return;
}
int main()
{
int n;
int q = 1;
while(scanf("%d" , &n) && n)
{
memset(x , 0 , sizeof x);
double x1 , y1 , x2 , y2;
int count = 0;
for(int i = 0; i < n; ++i)
{
scanf("%lf%lf%lf%lf" , &x1 , &y1 , &x2 , &y2);
seg[count]=segment(y1 , x1 , x2 , 1);
x[count++] = x1;
seg[count]=segment(y2 , x1 , x2 , -1);
//segment[i].y = y1;segment[i].l = x1;segment[i].r = x2;segment[i].flag = 1;
//segment[i + 1].y = y2;segment[i + n].l = x1;segment[i + n].r = x2;segment[i + n].flag = -1;
x[count++] = x2;
}
//离散
sort(seg , seg + count);
sort(x , x + count);
int sz = unique(x , x + count) - x;
double ans = 0;
for(int i = 0; i < count; ++i)
{
int l = lower_bound(x , x + sz , seg[i].l) - x;
int r = lower_bound(x , x + sz , seg[i].r) - x - 1;
update(1 , 0 , sz , l , r , seg[i].flag);
ans += node[1].len * (seg[i + 1].y - seg[i].y);
}
printf("Test case #%d\nTotal explored area: %.2f\n\n",q++,ans);
}
}
总结
算了,,,先鸽了,,,细节那天再补一下,,,,
(loading,,,,)