- Python|扫描版词书转文字(PyPDF、OCR)
NuageL
pdfocrpython
心血来潮想把词书pdf(只有扫描版)转化成电子版,然后插到某生词APP去复习然后有两个想法:1.按照A-Z等来分词单2.PDF转文字1.那首先需要把PDF分开,这个用PyPDF2可以达成PDF参考文章:掌握PDF文件处理的神器:PythonPyPDF2库详解-CSDN博客写了一个功能,允许用户一次性输入多个页码范围:fromPyPDF2importPdfReader,PdfWriterdefspl
- 用Keras构建爱情模型:破解情侣间的情感密码
忆愿
高质量领域文章keras人工智能深度学习python机器学习自然语言处理神经网络
文章目录一、给情话穿上数字马甲1.1中文分词那些坑1.2停用词过滤玄学二、给神经网络装个情感温度计2.1记忆增强套餐2.2注意力机制实战三、给模型喂点狗粮数据3.1数据增强七十二变3.2标注的艺术四、调参比哄对象还难4.1超参数扫雷指南4.2可视化调参黑科技五、实战演练之保命指南5.1部署成求生APP5.2案例分析库六、当AI遇见现实:模型局限与伦理困境6.1隐私雷区七、从玩具模型到生产系统7.1
- 怎么安装自定义分词器
思静鱼
#elasticsearches
安装自定义分词器的完整步骤在Elasticsearch中安装自定义分词器,通常需要修改索引配置或开发插件。以下是详细方法:一、基于配置实现自定义分词器(无需插件)适用于通过组合Elasticsearch内置的CharacterFilters、Tokenizers和TokenFilters实现的分词器。1.定义分词规则在创建索引时,通过settings.analysis配置自定义分词器:PUT/my
- 想要了解大模型,看懂这一篇就够了!大模型工作流程及核心参数介绍!
Gq.xxu
qwen3vllmtransforms大语言模型部署深度学习人工智能
若想深入探究大模型核心参数的效果与作用,就务必先弄清大模型的工作流程,明确核心参数在流程各阶段的效能与功能,知晓其具体含义。一,大模型的工作流程大模型运行时的工作原理可以概括为输入处理→特征提取→模型推理→结果生成四个核心阶段,整个过程融合了深度学习架构、自然语言处理技术以及分布式计算能力。从用户输入到大模型输出,整个工作的处理流程如下:输入文本→分词→嵌入+位置编码→Transformer多层处
- Python词法分析器:从概念到实践
凡狗蛋
本文还有配套的精品资源,点击获取简介:Python词法分析器是编程语言处理的关键环节,负责将源代码解析为有意义的标记或符号序列。本简介详细介绍了词法分析、正则表达式、分词、词法规则、词法分析器生成器以及编译原理等核心概念,并展示了如何使用Python内置的re模块和第三方库ply实现词法分析器,为进一步理解编程语言的工作原理和构建自定义编程语言打下基础。1.词法分析器的作用与目的词法分析器是编译器
- **深度解析Annotated Jieba:Python中的高效中文分词库**
深度解析AnnotatedJieba:Python中的高效中文分词库去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于Jieba的增强版分词库,为了解决原Jieba库在复杂场景下的需求,它提供了更丰富的功能和更友好的API设计。该项目由USTCDane开发并维护,旨在帮助开发者更好地理解和使用Jieba进行中文文本处理。技术分析1.代码注释与文档AnnotatedJ
- [特殊字符] Python 实战 | 批量统计中文文档词频并导出 Excel
happydog007
python自动化办公python开发语言
本文展示如何用Python脚本:批量读取文件夹中的多篇中文文档;用jieba分词并统计词频(过滤停用词与单字符);将各文档词频输出为对应Excel文件;是文本分析、内容审查、报告编写中的实用技巧。Step1:批量加载文件夹中文本文件路径importospath='主要业务'files=[os.path.join(path,f)forfinos.listdir(path)]使用标准库os.listd
- 对加密字段进行模糊查询:基于分词密文映射表的实现方案
大三小小小白
数据库
引言在当今数据安全日益重要的背景下,数据库字段加密已成为保护敏感信息的常见做法。然而,加密后的数据给模糊查询带来了巨大挑战。本文将介绍一种基于分词密文映射表的解决方案,实现对加密字段的高效模糊查询。一、问题背景考虑一个用户管理系统,其中包含手机号、身份证号、住址等敏感信息。这些字段需要加密存储以保证安全,但同时业务上又需要支持模糊查询(如根据手机号前几位查询用户)。传统加密方式直接阻碍了模糊查询功
- Elasticsearch检索高亮不正确,不精确问题
问题场景:搜索“a”高亮"A8A",,,,,分词器:IK分词器确认分词结果:下图说明已经正确分词!确认高亮效果:换一种高亮器查询效果:对应java代码:总结:当高亮显示不精确的时候,要从以下两方面找问题:1.分词器是否分词准确2.高亮器是否满足你的要求,不满足换一种高亮器查看效果我之前原默认的高亮器(plain)不能满足要求,后来使用unified高亮器解决了高亮不精确的问题。
- python内置函数reversed_Python3内置函数——reversed() = 翻转我的世界
大龙说学区
v.颠倒(reverse的过去式和过去分词);翻转help(reversed)Helponclassreversedinmodulebuiltins:classreversed(object)|reversed(sequence)->reverseiteratorovervaluesofthesequence||Returnareverseiterator||Methodsdefinedhere:
- docker安装Elasticsearch
Uluoyu
dockerelasticsearch
1.安装版本Elasticsearch(8.18.3)kibana(8.18.3)ik分词器(8.18.3)2.创建网络,让ES与Kibana容器互联dockernetworkcreatees-net3.加载镜像dockerpulldocker.elastic.co/elasticsearch/elasticsearch:8.18.3sudodockerpulldocker.elastic.co/
- 人工智能训练知识学习-TTS(智能语音合成)
笨鸟笃行
人工智能学习
人机对话——TTS(TextToSpeech)概念:TTS技术,即文本转语音技术,是一种将文字内容转换为语音输出的技术。它通过计算机程序和算法,将文本信息转化为自然流畅的语音信号,让用户能够听到文字内容,而无需手动阅读。(即将文本转换为语音输出)TTS技术的工作原理(一)文本预处理当TTS系统接收到一段文本输入时,首先会对文本进行预处理。这包括分词、词性标注、语义理解等操作。例如,在中文文本中,系
- Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
看透一个顶级AI句向量模型的设计秘密,从文件结构到加载原理,再到其背后的训练哲学。1Qwen3-Embedding模型结构拆解说明:目录包含了运行一个基于Transformer的句向量模型所需的所有组件文件类别核心文件作用核心模型model.safetensors,config.jsonmodel.safetensors存储了模型所有训练好的权重分词器tokenizer.json,vocab.js
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- 基于Python的携程景点评价爬虫与情感评分分析
程序员威哥
python爬虫开发语言
一、项目背景携程(Ctrip)是中国最流行的旅游预订平台之一,其景点用户评论包含了大量真实的游客反馈。通过分析评论的情感倾向,可以:为用户提供更可靠的景点推荐辅助景区运营方了解用户口碑构建情感评分系统,为评分失衡提供补充二、项目目标自动化抓取携程指定景点的用户评论清洗与分词评论文本对评论进行情感分析打分分析整体情绪趋势并可视化结果三、技术栈与工具模块工具/库数据爬取requests,re,json
- Python通过字符串调用函数_python 面向对象 根据字符串调动对应函数(1)
m0_61418142
python数据库linux
textprocess(file,language)但是textprocess(file=‘data.txt’,language=‘english’)language(text)TypeError:‘str’objectisnotcallable百度谷歌一番,我查到以下几种方式####1-字典最简单,易上手的方式,使用字典配对。defchinese(text):print(‘jieba分词’)de
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- 推荐几本人工智能方面的书(入门级)
人邮异步社区
人工智能深度学习神经网络
以下推荐几本适合入门人工智能的书籍,帮助你逐步建立基础知识和理解:一、数学基础类《数学之美》推荐理由:深入浅出地讲解了自然语言处理与搜索方向的数学原理,对于理解算法背后的数学逻辑非常有帮助。本书的章节名称,有“统计语言模型”“谈谈中文分词”“贾里尼克和现代语言处理”“布尔代数和搜索引擎”“信息指纹及其应用”等,似乎太过专业,实际上高中和大学低年级的同学们都能看得懂,当然本书因此也可以称得上是“高级
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- 向量数据库milvus中文全文检索取不到数据的处理办法
--勇
数据库milvus全文检索
检查中文分词配置Milvus2.5+支持原生中文全文检索,但需显式配置中文分词器:创建集合时指定分词器类型为chinesepythonschema.add_field(field_name="text",datatype=DataType.VARCHAR,max_length=65535,enable_analyzer=True,analyzer_params={"type":"chinese"}
- 华为OD机试 - 中文分词模拟器(Java 2024 D卷 100分)
哪 吒
华为od中文分词java
华为OD机试2024D卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试(JAVA)真题(D卷+C卷+A卷+B卷)》。刷的越多,抽中的概率越大,每一题都有详细的答题思路、详细的代码注释、样例测试,发现新题目,随时更新,全天CSDN在线答疑。一、题目描述给定一个连续不包含空格字符的字符串,该字符串仅包含英文小写字母及英文标点符号(逗号、句号、分号),同时给定词库,对该字符串进行精确分
- 大语言模型全流程开发技术详解:从架构、训练到对齐与量化
艾墨舟启航
大模型实战架构人工智能大语言模型
github:https://github.com/mlabonne/llm-course大语言模型全流程开发技术详解:从架构、训练到对齐与量化大模型实战指南:多模型生态实战与论文解读一、LLM架构(TheLLMarchitecture)不需要对Transformer架构有深入的了解,但了解现代LLM的主要步骤很重要:通过分词化将文本转换为数字,通过包括注意力机制在内的层处理这些分词,最后通过各种
- Python 调用大模型:解锁人工智能的无限可能
CarlowZJ
AI应用落地+Pythonpython人工智能
目录一、大模型的概念与特点(一)大模型的定义(二)大模型的特点(三)大模型的原理(四)大模型的发展历史二、Python调用大模型的实现方法(一)使用OpenAIAPI设置API密钥定义提示文本调用OpenAIAPI输出生成的文本加载预训练模型和分词器2.使用HuggingFaceTransformers库三、Python调用大模型的流程图四、Python调用大模型注意事项的1.数据隐私与安全2.成
- Qwen LLM(通义千问大模型 )的词编码原理:字节级别字节对编码(BBPE,Byte - level Byte Pair Encoding)
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython人工智能语言模型自然语言处理深度学习prompt
QwenLLM(通义千问大模型)的词编码原理:字节级别字节对编码(BBPE,Byte-levelBytePairEncoding)QwenLLM(通义千问大模型)的词编码基于字节级别字节对编码(BBPE,Byte-levelBytePairEncoding),以下从原理、方法、举例展开说明:一、核心原理BBPE本质是子词分词+编码的混合逻辑,核心目标是让文本高效转化为模型可理解的token(令牌)
- 深度学习Day-38:Pytorch文本分类入门
Point__Nemo
深度学习自然语言处理人工智能
本文为:[365天深度学习训练营]中的学习记录博客原作者:[K同学啊|接辅导、项目定制]任务:了解文本分类的基本流程学习常用数据清洗方法学习如何使用jieba实现英文分词学习如何构建文本向量1.前期准备1.1环境安装pipinstalltorchvision==0.15.0pipinstalltorchaudio==2.0.1pipinstalltorch==2.0.01.2加载数据importt
- 6月19日复盘
四万二千
人工智能transformer
6月19日复盘二、分词与词向量分词和词向量是NLP的基础技术。1.分词分词是将连续的文本分割成独立的词汇单元(tokens)的过程。这些单元可以是单词、符号或子词。1.1中文特性中文句子由连续的汉字组成,没有明显的词边界:词与词之间没有分隔符英文:Ilovenaturallanguageprocessing.中文:我喜欢自然语言处理。词是最基本的语义单元。为了处理文本信息,须将连续的序列分割成有意
- springboot2.X集成spring data elasticsearch
向阳不像羊
springelasticsearchjava
1.准备工作在集成es之前,我们需要选择springboot对应的es版本,版本一定要选择正确,否则后面可能会出现各种各样的问题。下图是springboot与es客户端版本对应关系:我的springboot版本是2.4.10,所以这里我选择es客户端7.9.3的版本es下载链接:DownloadElasticsearch|Elasticik分词器下载链接:https://github.com/me
- 小白学大模型:Hugging Face Tokenizer
AI大模型_学习君
人工智能chatgpt语言模型自然语言处理大模型huggingfacetoken
Tokenizer介绍在自然语言处理(NLP)领域,Tokenizer(分词器)是准备输入模型的关键步骤之一。HuggingFace提供了用于各种模型的分词器库,其中大多数分词器都以两种风格提供:一种是完整的Python实现,另一种是基于Rust库Tokenizers的“Fast”实现。这两种实现方式各有特点,其中“Fast”实现具有两大优势:显著提升速度:特别是在批处理分词时,使用“Fast”实
- Happy-LLM task2 第一章 NLP 基础概念(2天)
unityのkiven
自然语言处理人工智能
NLP基础概念简介自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的核心分支,旨在让计算机理解、处理并生成人类语言,实现人机自然交互。一、NLP定义与目标NLP融合计算机科学、语言学、心理学等多学科知识,通过算法让计算机模拟人类的语言认知过程。其核心目标是打破自然语言与机器语言的壁垒,使计算机能处理语义、语境、情感等复杂语言要素,完成从基础分词到深层语义理解
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs