Opencv2.4学习::二值化(3)自适应二值化

二值化系列:

(1)OTSU算法

(2)固定二值化

(3)自适应二值化

 

adaptiveThreshold

void adaptiveThreshold(InputArray src, OutputArraydst,double maxValue,int adaptiveMethod,int thresholdType,

int blockSize,double C );

  • double maxValue-----------------------//灰度图像的最大值,最小值为0(即黑色)
  • int adaptiveMethod-------------------//阈值算法CV_ADAPTIVE_THRESH_MEAN_C、CV_ADAPTIVE_THRESH_GAUSSIAN_C
  • int thresholdType---------------------//二值图是否反转CV_THRESH_BINARY、CV_THRESH_BINARY_INV
  • int blockSize---------------------------//块的大小,只能取奇数3,5,7......
  • double C-------------------------------//加权系数,可取负数

调用实例: 

#include
#include
#include
using namespace std;
using namespace cv;
int main()
{
	Mat srcImage = imread("F:\\opencv_re_learn\\2.jpg");
	if (!srcImage.data){
		cout << "failed to read" << endl;
		system("pause");
		return -1;
	}
	imshow("src", srcImage);
	//conver to gray
	Mat srcGray;
	cvtColor(srcImage, srcGray, CV_BGR2GRAY);
	Mat dstImage;
	//初始化参数
	int blockSize = 3;
	int constValue = 5;
	const int maxVal = 255;
	//算法选择
	//0:ADAPTIVE_THRESH_MEAN_C
	//1:ADAPTIVE_THRESH_GAUSSIAN_C
	//阈值类型
	//0:THRESH_BINARY
	//1:THRESH_BINARY_INV

	//阈值化
	adaptiveThreshold(srcGray, dstImage, maxVal,
		ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY,
		blockSize, constValue);
	imshow("thres_result", dstImage);
	waitKey(0);
	return 0;
}

 实现效果:

Opencv2.4学习::二值化(3)自适应二值化_第1张图片

你可能感兴趣的:(Opencv)