给定一个二叉树,它的每个结点都存放一个 0-9 的数字,每条从根到叶子节点的路径都代表一个数字。
例如,从根到叶子节点路径 1->2->3 代表数字 123。
计算从根到叶子节点生成的所有数字之和。
说明: 叶子节点是指没有子节点的节点。
示例 1:
输入: [1,2,3]
1
/ \
2 3
输出: 25
解释:
从根到叶子节点路径 1->2 代表数字 12.
从根到叶子节点路径 1->3 代表数字 13.
因此,数字总和 = 12 + 13 = 25.
示例 2:
输入: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
输出: 1026
解释:
从根到叶子节点路径 4->9->5 代表数字 495.
从根到叶子节点路径 4->9->1 代表数字 491.
从根到叶子节点路径 4->0 代表数字 40.
因此,数字总和 = 495 + 491 + 40 = 1026.
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def sumNumbers(self, root):
if root == None:
return 0
ret = []
self.dfs(root,'',ret)
ret = [int(i) for i in ret]
return sum(ret)
def dfs(self,root,strr,ret):
if root.left == None and root.right == None:
strr = strr+str(root.val)
ret.append(strr)
if root.left:
self.dfs(root.left,strr+str(root.val),ret)
if root.right:
self.dfs(root.right,strr+str(root.val),ret)
大神总是能够写出更加简单的代码
public int sumNumbers(TreeNode root) {
return sum(root, 0);
}
public int sum(TreeNode n, int s){
if (n == null) return 0;
if (n.right == null && n.left == null) return s*10 + n.val;
return sum(n.left, s*10 + n.val) + sum(n.right, s*10 + n.val);
}