- 深度学习和机器学习的差异
The god of big data
教程深度学习机器学习人工智能
一、技术架构的本质差异传统机器学习(MachineLearning)建立在统计学和数学优化基础之上,其核心技术是通过人工设计的特征工程(FeatureEngineering)构建模型。以支持向量机(SVM)为例,算法通过核函数将数据映射到高维空间,但特征提取完全依赖工程师的领域知识。这种"人工特征+浅层模型"的结构在面对复杂非线性关系时容易遭遇性能瓶颈。深度学习(DeepLearning)作为机器
- 【OpenAI官方课程】第一课:GPT-Prompt 的构建原则指南
euffylee
ChatGPTPrompt官方课程gptprompt人工智能
欢迎来到ChatGPT开发人员提示工程课程(ChatGPTPromptEngineeringforDevelopers)!本课程将教您如何通过OpenAIAPI有效地利用大型语言模型(LLM)来创建强大的应用程序。本课程由OpenAI的IsaFulford和DeepLearning.AI的AndrewNg主讲,深入了解LLM的运作方式,提供即时工程的最佳实践,并演示LLMAPI在各种应用程序中的使
- 深入探索Deeplearning4j(DL4J):Java深度学习的全面指南
软件职业规划
java深度学习开发语言
一、DL4J框架概述Deeplearning4j(DL4J)是一个开源的深度学习框架,专为Java和Scala设计,运行在Java虚拟机(JVM)上。它由Skymind公司开发并维护,旨在将深度学习技术应用于大规模商业应用。DL4J支持多种深度学习模型,包括卷积神经网络(CNN)、循环神经网络(RNN)、长短期记忆网络(LSTM)等。自2014年首次发布以来,DL4J已经成为Java深度学习领域的
- Python 在 AI 领域的应用:从零构建你的第一个 AI 模型
嵌入式Jerry
Pythonpython人工智能开发语言嵌入式硬件windowsubuntu
引言人工智能(AI)已经成为现代科技的核心,而Python是AI领域最受欢迎的编程语言之一。其强大的库和框架,如TensorFlow、PyTorch、scikit-learn,使AI开发变得更加简单高效。本文将带你深入理解Python在AI中的应用,并通过机器学习(MachineLearning)和深度学习(DeepLearning)的实际示例,讲解如何构建一个AI模型。1.Python为什么适合
- 人工智能与深度学习的应用案例:从技术原理到实践创新
accurater
人工智能深度学习科技
第一章引言人工智能(AI)作为21世纪最具变革性的技术之一,正通过深度学习(DeepLearning)等核心技术推动各行业的智能化进程。从计算机视觉到自然语言处理,从医疗诊断到工业制造,深度学习通过模拟人脑神经网络的层次化学习机制,实现了对复杂数据的高效分析与决策。本文结合前沿技术框架与行业应用案例,探讨深度学习的核心原理及其在多个领域的实践路径,并附代码实例以增强技术理解。第二章深度学习的技术基
- 人工智能与深度学习的应用案例解析及代码实现
accurater
人工智能深度学习科技机器人
引言人工智能(AI)与深度学习(DeepLearning)作为21世纪最具变革性的技术之一,已渗透到医疗、金融、交通、制造等各个领域。深度学习通过多层神经网络模拟人类认知过程,显著提升了复杂任务的自动化水平。本文将从技术原理、核心应用案例及代码实现三个维度,系统解析其实际应用,并探讨未来挑战与发展方向。一、深度学习技术概述1.1核心技术框架深度学习基于深度神经网络(DNN),其核心在于通过多层非线
- pandas学习笔记—DataFrame查询
风之小西
pandas学习笔记
1、列查询importpandasaspd#创建测试dfdf_book=pd.DataFrame(data=[['论语',5,5],['三体',10,6],['资治通鉴',8,9],['DEEPLEARNING',3,5],['黄帝内经',7,10]],columns=['书名','数量','单价'],index=['a','b','c','d','e'])#用列名直接访问,单列会返回series
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- 深度学习现状与未来发展趋势分析报告(深度学习还是主流吗?)
与光同尘 大道至简
深度学习人工智能
此博客分析深度学习当前的主流应用领域、其受关注度的变化趋势、可能的技术替代或补充方案、产业界和学术界的不同发展方向,以及影响其受关注度变化的核心因素。报告将包括结构化分析(背景、现状、挑战、未来趋势)、数据驱动(市场趋势、论文发表量等数据支持)以及行业案例分析,以展示某些行业如何逐步减少对深度学习的依赖。背景深度学习的概念与发展历程:深度学习(DeepLearning)是机器学习中的一类方法,源于
- 一文讲清楚自我学习和深度学习
平凡而伟大(心之所向)
人工智能人工智能深度学习机器学习
自我学习(Self-Learning)和深度学习(DeepLearning)是两个不同的概念,但它们在某些应用场景中可以有交集。下面我们将分别介绍这两个概念,并探讨如何将它们结合起来用于自我学习系统。自我学习(Self-Learning)自我学习是指个体或系统通过自主探索、实践和反思来获取知识和技能的过程。它强调的是无需外部直接指导的学习方式,通常包括以下几个方面:自主性:学习者根据自己的兴趣、需
- 大语言模型生成式AI学习笔记——1. 1.1 大语言模型及生成式AI项目生命周期简介——课程简介
预见未来to50
机器学习深度学习(ML/DL)人工智能语言模型学习
GenerativeAIwithLargeLanguageModelsbyDeepLearning.AI&AmazonWebServicesAboutthisCourseInGenerativeAIwithLargeLanguageModels(LLMs),you’lllearnthefundamentalsofhowgenerativeAIworks,andhowtodeployitinreal
- 机器学习与深度学习资料
JasonDing1354
【MachineLearning】
《BriefHistoryofMachineLearning》介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、DeepLearning.《DeepLearninginNeuralNetworks:AnOverview》介绍:这是瑞士人工智能实验室JurgenSchmidhuber写的最新版本《神经网络与深度学习综述》本综述的特点是以
- 深度学习的前沿与挑战:从基础到最新进展
Jason_Orton
深度学习人工智能数据挖掘机器学习
目录引言什么是深度学习?深度学习的工作原理深度学习的关键技术1.卷积神经网络(CNN)2.循环神经网络(RNN)3.生成对抗网络(GAN)4.变分自编码器(VAE)5.自注意力机制与Transformer深度学习的应用1.计算机视觉2.自然语言处理(NLP)3.语音识别与合成4.推荐系统5.医学影像分析深度学习面临的挑战结语引言深度学习(DeepLearning)近年来成为人工智能领域的核心技术之
- 深度学习:从神经网络到智能应用
Jason_Orton
深度学习神经网络人工智能机器学习
目录引言一.什么是深度学习?二.深度学习的基本原理1.神经网络的组成2.激活函数3.反向传播(Backpropagation)三.深度学习的常见模型四.深度学习的应用场景五.深度学习的挑战与未来结语引言深度学习(DeepLearning)作为机器学习的一个分支,近年来在人工智能领域取得了革命性的进展。无论是语音识别、图像识别,还是自动驾驶、自然语言处理,深度学习都在推动着技术的发展和行业的变革。那
- 书籍-《在AWS上构建可扩展的深度学习Pipeline》
深度学习机器学习人工智能
书籍:BuildingScalableDeepLearningPipelinesonAWS:Develop,Train,andDeployDeepLearningModels作者:AbdelazizTestas出版:Apress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《在AWS上构建可扩展的深度学习Pipeline》01书籍介绍本书是您在亚马逊网络服务(AWS)上创建强大且端到端深度学
- 终于明白了!人工智能、机器学习、深度学习、集成学习及大模型的定义与联系
大模型玩家
人工智能机器学习深度学习产品经理算法学习方法集成学习
在当今快速发展的科技领域,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL)、集成学习(EnsembleLearning)以及大模型(LargeModels)等概念频繁出现在人们的视野中。它们不仅推动了科技的进步,也深刻影响了社会生活的方方面面。本文将对这些概念进行全面解析,并探讨它们之间的联
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
m0_74825634
面试学习路线阿里巴巴深度学习搜索引擎人工智能
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1?查询解析与语义理解4.2?搜索排名与相关性排序4.3?个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)
- 深度学习模型:原理、架构与应用
一ge科研小菜菜
工具深度学习
深度学习(DeepLearning)是机器学习中的一个分支,基于人工神经网络的发展,尤其是多层神经网络的研究,使其在语音识别、图像处理、自然语言处理等领域取得了显著进展。深度学习的核心是通过大量数据的训练,学习到数据的内在结构和模式,并且具备自动从复杂的输入中提取特征的能力。本文将从深度学习的基本原理、常见模型、训练技巧、应用领域及其面临的挑战等方面进行详细探讨,帮助理解深度学习模型如何在现代科技
- 深度学习在医疗影像分析中的革命性应用
Echo_Wish
人工智能前沿技术深度学习人工智能
深度学习在医疗影像分析中的革命性应用引言医疗影像分析是现代医学中不可或缺的一部分,特别是在疾病诊断和治疗过程中发挥了至关重要的作用。随着深度学习技术的发展,医疗影像分析的效率和准确性得到了显著提升。本文将探讨如何利用深度学习技术,特别是Python编程语言,来优化医疗影像分析,展示具体的代码实例,并举例说明其实际应用效果。深度学习与医疗影像分析深度学习(DeepLearning)是一种基于人工神经
- 论文代码阅读及部分复现:Revisiting Deep Learning Models for Tabular Data
thorn_r
论文阅读深度学习人工智能
论文地址:https://arxiv.org/pdf/2106.11959.pdf项目地址:GitHub-yandex-research/rtdl-revisiting-models:(NeurIPS2021)RevisitingDeepLearningModelsforTabularData相关数据:https://www.dropbox.com/s/o53umyg6mn3zhxy/2024年2
- 快速搭建GRU循环神经网络预测模型
智汇未来
rnn深度学习gru人工智能神经网络matlab算法
首先,我需要使用GRU神经网络进行预测。GRU是GatedRecurrentUnit的缩写,是一种常用的循环神经网络结构,适用于序列数据的预测任务。但是,我需要确保MATLAB支持GRU网络的创建和训练。让我想想,MATLAB的DeepLearningToolbox提供了设计和训练神经网络的功能,包括GRU层。等等,我需要确认一下如何在MATLAB中创建包含GRU层的网络。好的,那我就开始写代码吧
- pytorch 人脸修复_修复pytorch数据加载器
weixin_26729375
人工智能pythonjava人脸识别
pytorch人脸修复黑客数据科学工作流程(Hackingdatascienceworkflows)Icameacrossaninterestingproblemrecently.AteammateandIwereworkingonaseriesofDeepLearningexperimentsthatinvolvedanimagedatasetthatspannedhundredsofgigab
- 基于对比增强的超声视频的域知识为乳腺癌诊断提供了深度学习
Philo`
医学图像分割论文阅读深度学习人工智能论文阅读图像处理pytorch机器学习
DomainKnowledgePoweredDeepLearningforBreastCancerDiagnosisBasedonContrast-EnhancedUltrasoundVideos期刊分析摘要引言相关工作乳腺癌中的CAD基于乳房CEU的CAD方法整体框架原始C3D骨干领域知识指导的时间注意模块(DKG-TMA)域知识引导的通道注意模块数据集和实验乳腺-对比增强超声数据集实验设置实验
- Apache MXNet 深度学习框架教程
娄妃元Kacey
ApacheMXNet深度学习框架教程mxnetLightweight,Portable,FlexibleDistributed/MobileDeepLearningwithDynamic,Mutation-awareDataflowDepScheduler;forPython,R,Julia,Scala,Go,Javascriptandmore项目地址:https://gitcode.com/g
- 深度可分离卷积_主干网络系列(6) - Xception: 使用深度可分离卷积的深度学习
weixin_39630106
深度可分离卷积
论文地址:Xception:DeepLearningwithDepthwiseSeparableConvolutions工程代码:Github链接0.摘要该论文对Inception模块做了新的解释,认为Inception模块是常规卷积神经网络到深度可分离卷积神经网络的过渡手段,基于这种思想,深度可分离卷积可以看作一个具有最大数量tower的Inception模块(tower是指Inception模
- 深度学习与搜索引擎优化的结合:DeepSeek的创新与探索
云边有个稻草人
热门文章深度学习搜索引擎人工智能DeepSeek
目录引言1.传统搜索引擎的局限性2.深度学习在搜索引擎中的作用3.DeepSeek实现搜索引擎优化的关键技术3.1神经网络与搜索引擎优化3.2自然语言处理与查询理解3.3深度强化学习与搜索结果排序4.DeepSeek的深度学习架构4.1查询解析与语义理解4.2搜索排名与相关性排序4.3个性化推荐与用户行为分析5、总结引言随着人工智能(AI)技术的迅速发展,深度学习(DeepLearning)和自然
- 深度学习框架PyTorch原理与实践
AI天才研究院
AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.背景介绍3.基本概念和术语3.1PyTorch简介3.2PyTorch的特点1)自动求导机制2)GPU加速3)模型部署4)数据管道5)代码阅读友好4.核心算法原理4.1神经网络结构4.2神经网络层4.3激活函数5.实际案例——MNIST手写数字识别数据准备模型定义训练测试整体代码1.简介Deeplearning(DL)hasbeenanincreas
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- Apache TVM:开源深度学习编译器栈的领跑者
计攀建Eliza
ApacheTVM:开源深度学习编译器栈的领跑者tvmOpendeeplearningcompilerstackforcpu,gpuandspecializedaccelerators项目地址:https://gitcode.com/gh_mirrors/tv/tvm项目介绍ApacheTVM是一个专为深度学习系统设计的编译器栈。它旨在弥合生产力导向的深度学习框架与性能和效率导向的硬件后端之间的差
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio