DeepLearning.ai code笔记2:超参数调试、正则化以及优化

1、L2正则化

不使用正则化的公式:

J=1mi=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))(1) (1) J = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( a [ L ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ L ] ( i ) ) )

正则化的公式:
Jregularized=1mi=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))cross-entropy cost+1mλ2lkjW[l]2k,jL2 regularization cost(2) (2) J r e g u l a r i z e d = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( a [ L ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ L ] ( i ) ) ) ⏟ cross-entropy cost + 1 m λ 2 ∑ l ∑ k ∑ j W k , j [ l ] 2 ⏟ L2 regularization cost

cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost

L2_regularization_cost = 1./m * lambd/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3)))

cost = cross_entropy_cost + L2_regularization_cost
dZ3 = A3 - Y
dW3 = 1./m * np.dot(dZ3, A2.T) + lambd / m * W3   # + lambd / m * W3
db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
dA2 = np.dot(W3.T, dZ3)
dZ2 = np.multiply(dA2, np.int64(A2 > 0))
dW2 = 1./m * np.dot(dZ2, A1.T) + lambd / m * W2
db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
dA1 = np.dot(W2.T, dZ2)
dZ1 = np.multiply(dA1, np.int64(A1 > 0))
dW1 = 1./m * np.dot(dZ1, X.T) + lambd / m * W1
db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)

2、He 初始化

parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l-1]) * np.sqrt(2.0/layers_dims[l-1])
parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

3、Adam 梯度下降

How does Adam work?

  • It calculates an exponentially weighted average of past gradients, and stores it in variables v v (before bias correction) and vcorrected v c o r r e c t e d (with bias correction).
  • It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables s s (before bias correction) and scorrected s c o r r e c t e d (with bias correction).
  • It updates parameters in a direction based on combining information from “1” and “2”.
    The update rule is, for l=1,...,L l = 1 , . . . , L :

vdW[l]=β1vdW[l]+(1β1)JW[l]vcorrecteddW[l]=vdW[l]1(β1)tsdW[l]=β2sdW[l]+(1β2)(JW[l])2scorrecteddW[l]=sdW[l]1(β1)tW[l]=W[l]αvcorrecteddW[l]scorrecteddW[l]+ε { v d W [ l ] = β 1 v d W [ l ] + ( 1 − β 1 ) ∂ J ∂ W [ l ] v d W [ l ] c o r r e c t e d = v d W [ l ] 1 − ( β 1 ) t s d W [ l ] = β 2 s d W [ l ] + ( 1 − β 2 ) ( ∂ J ∂ W [ l ] ) 2 s d W [ l ] c o r r e c t e d = s d W [ l ] 1 − ( β 1 ) t W [ l ] = W [ l ] − α v d W [ l ] c o r r e c t e d s d W [ l ] c o r r e c t e d + ε

where:

t counts the number of steps taken of Adam
L is the number of layers
β1 β 1 and β2 β 2 are hyperparameters that control the two exponentially weighted averages.
α α is the learning rate
ε ε is a very small number to avoid dividing by zero

翻译: 第一步和第二步分别使用了动量梯度下降和均方根支算法,其原理都是利用指数加权平均的思想和过去的梯度进行联系,让其具有一定的原来的动量(趋势)或者得到一个更平均的值不至于矫枉过正。corrected是指进行一定的修正。

for l in range(L):
     # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".
     v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1-beta1) * grads['dW' + str(l+1)]
     v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1-beta1) * grads['db' + str(l+1)]

     # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".
     v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1-np.power(beta1,t))
     v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1-np.power(beta1,t))

     # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".
     s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1-beta2) * grads['dW' + str(l+1)]**2
     s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1-beta2) * grads['db' + str(l+1)]**2

     # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".
     s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1-np.power(beta2,t))
     s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1-np.power(beta2,t))

你可能感兴趣的:(机器学习,深度学习,吴恩达深度学习编程作业梳理)