51nod-1791-合法括号子段

有一个括号序列,现在要计算一下它有多少非空子段是合法括号序列。

合法括号序列的定义是:

1.空序列是合法括号序列。

2.如果S是合法括号序列,那么(S)是合法括号序列。
3.如果A和B都是合法括号序列,那么AB是合法括号序列。

Input
多组测试数据。
第一行有一个整数T(1<=T<=1100000),表示测试数据的数量。
接下来T行,每一行都有一个括号序列,是一个由’(‘和’)'组成的非空串。
所有输入的括号序列的总长度不超过1100000。
Output
输出T行,每一行对应一个测试数据的答案。
Sample Input
5
(
()
()()
(()
(())
Sample Output
0
1
3
1
2


第一反应:这妥妥的dp。
然后想了半天状态转移都是错的。
定义状态dp[i]为以第i个括号结尾的合法括号子段的数量,那么dp[i]=dp[pos[i]-1]+1(pos[i]是和第i个括号匹配的左括号的位置)
然后答案就是把所有的dp值加起来。
原因:(自己找规律看看吧…QAQ)
再然后发现要用栈存储和右括号匹配的左括号?
不要用memset,会T(别问我怎么知道的)
这道题的结果好像要用long long。
详见代码。

#include
#include
#include
#define maxn 1100005
using namespace std;
int t,n,dp[maxn];
char s[maxn];
stack<int> sk;
int main()
{
	scanf("%d",&t);
	while(t--)
	{
		scanf("%s",s+1);
		n=strlen(s+1);
		while(!sk.empty()) sk.pop();
		long long ans=0;
		for(int i=1;i<=n;i++)
		{
			dp[i]=0;
			if(s[i]==')')
			{
				if(!sk.empty())
				{
					int l=sk.top();sk.pop();
					dp[i]=dp[l-1]+1;
					ans+=1ll*dp[i];
				}
			}
			else sk.push(i);
		}
		printf("%lld\n",ans);
	}
}

你可能感兴趣的:(懵逼了半天终于AC,dp)