前篇文章分析了SPI主控制器驱动,也就是SPI总线驱动,既然总线有了,根据Linux设备驱动模型,还得有SPI设备和SPI设备驱动。SPI设备是在板级文件中注册,SPI设备驱动需要用户自己实现,好在内核为我们提供了一个通用的SPI设备驱动spidev.c,下面就来分析一下这个文件,该文件位于kernel3.0.15/drivers/spi/spidev.c。
1. 模块初始化和注销:spidev_init & spidev_exit
static const struct file_operations spidev_fops = {
.owner = THIS_MODULE,
/* REVISIT switch to aio primitives, so that userspace
* gets more complete API coverage. It'll simplify things
* too, except for the locking.
*/
.write = spidev_write,
.read = spidev_read,
.unlocked_ioctl = spidev_ioctl,
.compat_ioctl = spidev_compat_ioctl,
.open = spidev_open,
.release = spidev_release,
.llseek = no_llseek,
};
static struct spi_driver spidev_spi_driver = {
.driver = {
.name = "spidev",
.owner = THIS_MODULE,
},
.probe = spidev_probe,
.remove = __devexit_p(spidev_remove),
/* NOTE: suspend/resume methods are not necessary here.
* We don't do anything except pass the requests to/from
* the underlying controller. The refrigerator handles
* most issues; the controller driver handles the rest.
*/
};
/*-------------------------------------------------------------------------*/
static int __init spidev_init(void)
{
int status;
/* Claim our 256 reserved device numbers. Then register a class
* that will key udev/mdev to add/remove /dev nodes. Last, register
* the driver which manages those device numbers.
*/
BUILD_BUG_ON(N_SPI_MINORS > 256);
//注册字符设备,参数spidev_fops是struct file_operations的实例,这里就可以知道,用户程序的open、write等操作最终会调用这里面的函数
status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops);
if (status < 0)
return status;
spidev_class = class_create(THIS_MODULE, "spidev"); //创建spidev这一类设备,为后面自动生成设备节点做准备
if (IS_ERR(spidev_class)) {
unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
return PTR_ERR(spidev_class);
}
status = spi_register_driver(&spidev_spi_driver); //注册spi设备驱动
if (status < 0) {
class_destroy(spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
}
return status;
}
module_init(spidev_init);
static void __exit spidev_exit(void)
{
spi_unregister_driver(&spidev_spi_driver);
class_destroy(spidev_class);
unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name);
}
module_exit(spidev_exit);
MODULE_AUTHOR("Andrea Paterniani, ");
MODULE_DESCRIPTION("User mode SPI device interface");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:spidev");
在模块初始化函数中,创建了一个字符设备以提供API给用户层,同时创建了一个spidev类,最后注册spi_driver到内核中。在这里我们看到了SPI设备驱动是如何提供API给用户层的,那就是通过再熟悉不过的字符设备。通过字符设备,给用户层提供了5个API:open,release,write,read和ioctl。
接下来分析一下spi_register_driver函数,该函数位于kernel3.0.15/drivers/spi/spi.c
int spi_register_driver(struct spi_driver *sdrv)
{
sdrv->driver.bus = &spi_bus_type; //该驱动所属的总线
if (sdrv->probe)
sdrv->driver.probe = spi_drv_probe;
if (sdrv->remove)
sdrv->driver.remove = spi_drv_remove;
if (sdrv->shutdown)
sdrv->driver.shutdown = spi_drv_shutdown;
//将驱动注册进设备模型,注册成功的话就会在总线上寻找设备,调用总线上的match函数,看能否与之匹配起来,匹配成功的话,驱动中的probe函数就会被调用
return driver_register(&sdrv->driver);
}
在调用driver_register的过程中,将用driver.name和spi_device的modalias字段进行比较,两者相等则将该spi_driver和spi_device进行绑定。当spi_driver注册成功以后,将调用probe方法:spidev_probe函数。
2. 探测和移除函数:spidev_probe & spidev_remove
static int __devinit spidev_probe(struct spi_device *spi)
{
struct spidev_data *spidev;
int status;
unsigned long minor;
/* Allocate driver data */
spidev = kzalloc(sizeof(*spidev), GFP_KERNEL); //分配内存,注意对象的类型是struct spidev_data
if (!spidev)
return -ENOMEM;
/* Initialize the driver data */
spidev->spi = spi;
spin_lock_init(&spidev->spi_lock); //一些锁和链表的初始化
mutex_init(&spidev->buf_lock);
INIT_LIST_HEAD(&spidev->device_entry);
/* If we can allocate a minor number, hook up this device.
* Reusing minors is fine so long as udev or mdev is working.
*/
mutex_lock(&device_list_lock);
minor = find_first_zero_bit(minors, N_SPI_MINORS); //从名字上就可以知道,就是找到第一个为0的位,分析见下面
if (minor < N_SPI_MINORS) {
struct device *dev;
spidev->devt = MKDEV(SPIDEV_MAJOR, minor); //如果找到了非0位,就将它作为次设备号与之前注册的主设备号生成设备号
dev = device_create(spidev_class, &spi->dev, spidev->devt,//创建设备,并生成设备节点,设备节点在/dev目录下,名字的形式为“spidevx.x”
spidev, "spidev%d.%d",
spi->master->bus_num, spi->chip_select);
status = IS_ERR(dev) ? PTR_ERR(dev) : 0;
} else {
dev_dbg(&spi->dev, "no minor number available!\n");
status = -ENODEV;
}
if (status == 0) { //创建设备成功后,将相应的位置1,表示该次设备号已经被使用,同时将该设备加入到设备链表
set_bit(minor, minors);
list_add(&spidev->device_entry, &device_list);
}
mutex_unlock(&device_list_lock);
if (status == 0)
spi_set_drvdata(spi, spidev); //将设备的私有数据指针指向该设备
else
kfree(spidev);
return status;
}
static int __devexit spidev_remove(struct spi_device *spi)
{
struct spidev_data *spidev = spi_get_drvdata(spi);
/* make sure ops on existing fds can abort cleanly */
spin_lock_irq(&spidev->spi_lock);
spidev->spi = NULL;
spi_set_drvdata(spi, NULL);
spin_unlock_irq(&spidev->spi_lock);
/* prevent new opens */
mutex_lock(&device_list_lock);
list_del(&spidev->device_entry);
device_destroy(spidev_class, spidev->devt);
clear_bit(MINOR(spidev->devt), minors);
if (spidev->users == 0)
kfree(spidev);
mutex_unlock(&device_list_lock);
return 0;
}
spidev_data(kernel3.0.15/driver/spi/spidev.c)
struct spidev_data {
dev_t devt; //设备号
spinlock_t spi_lock;
struct spi_device *spi;
struct list_head device_entry; //设备链表,所有采用此驱动的设备将连成一个链表
/* buffer is NULL unless this device is open (users > 0) */
struct mutex buf_lock;
unsigned users; //计数,也即是此设备被open的次数
u8 *buffer;
};
find_first_zero_bit(minors, N_SPI_MINORS)
kernel3.0.15/driver/spi/spidev.c
#define N_SPI_MINORS 32 /* ... up to 256 */
static DECLARE_BITMAP(minors, N_SPI_MINORS);
DECLARE_BITMAP是一个宏,定义如下:
kernel3.0.15/include/linux/types.h
#define DECLARE_BITMAP(name,bits) \
unsigned long name[BITS_TO_LONGS(bits)]
将宏展开后是这样的,unsigned long minors[1],其实就是定义一个只有一个元素的无符号长整形数组miniors。
3. 打开和释放函数:spidev_open & spidev_release
static int spidev_open(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = -ENXIO;
mutex_lock(&device_list_lock);
list_for_each_entry(spidev, &device_list, device_entry) {
if (spidev->devt == inode->i_rdev) { //遍历设备链表,每找到一个设备就将它的设备号与打开文件的设备号进行比较,相等的话表示查找成功
status = 0;
break;
}
}
//查找成功后就分配读写数据内存,使用计数加1,设置文件私有数据指针指向查找到的设备,以后在驱动的write、read函数里就可以把它取出来
if (status == 0) {
if (!spidev->buffer) {
spidev->buffer = kmalloc(bufsiz, GFP_KERNEL);
if (!spidev->buffer) {
dev_dbg(&spidev->spi->dev, "open/ENOMEM\n");
status = -ENOMEM;
}
}
if (status == 0) {
spidev->users++;
filp->private_data = spidev;
nonseekable_open(inode, filp);
}
} else
pr_debug("spidev: nothing for minor %d\n", iminor(inode));
mutex_unlock(&device_list_lock);
return status;
}
static int spidev_release(struct inode *inode, struct file *filp)
{
struct spidev_data *spidev;
int status = 0;
mutex_lock(&device_list_lock);
spidev = filp->private_data;
filp->private_data = NULL;
/* last close? */
spidev->users--;
if (!spidev->users) {
int dofree;
kfree(spidev->buffer);
spidev->buffer = NULL;
/* ... after we unbound from the underlying device? */
spin_lock_irq(&spidev->spi_lock);
dofree = (spidev->spi == NULL);
spin_unlock_irq(&spidev->spi_lock);
if (dofree)
kfree(spidev);
}
mutex_unlock(&device_list_lock);
return status;
}
4. 读和写函数:spidev_read & spidev_write
/* Read-only message with current device setup */
static ssize_t
spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz)
return -EMSGSIZE;
spidev = filp->private_data;
mutex_lock(&spidev->buf_lock);
status = spidev_sync_read(spidev, count);
if (status > 0) {
unsigned long missing;
missing = copy_to_user(buf, spidev->buffer, status);
if (missing == status)
status = -EFAULT;
else
status = status - missing;
}
mutex_unlock(&spidev->buf_lock);
return status;
}
/* Write-only message with current device setup */
static ssize_t
spidev_write(struct file *filp, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct spidev_data *spidev;
ssize_t status = 0;
unsigned long missing;
/* chipselect only toggles at start or end of operation */
if (count > bufsiz) //应用程序写入的数据不能大于驱动中缓冲区的大小,默认为4096个字节
return -EMSGSIZE;
spidev = filp->private_data; //指向文件的私有数据
mutex_lock(&spidev->buf_lock);
missing = copy_from_user(spidev->buffer, buf, count); //拷贝用户空间的数据到内核空间
if (missing == 0) {
status = spidev_sync_write(spidev, count);
} else
status = -EFAULT;
mutex_unlock(&spidev->buf_lock);
return status;
}
5.ioctl函数:spidev_ioctl