商圈标签

商圈标签

一、使用百度地图开发平台(lbs),根据经纬度查询商圈

:中国的经纬度范围大约为:维度3.86~53.55,经度73.66~135.05不在范围内的数据可不做处理

第一步:注册百度地图开发平台的账号,申请地址:http://lbsyun.baidu.com/

 商圈标签_第1张图片

 

 

第二步:填写注册信息

 商圈标签_第2张图片

 

 商圈标签_第3张图片

 

 商圈标签_第4张图片

 

 第三步:创建应用(申请密钥)

商圈标签_第5张图片

 

 

第四步:生成SN

package test;

import java.io.UnsupportedEncodingException;

import java.net.URLEncoder;

import java.security.NoSuchAlgorithmException;

import java.util.LinkedHashMap;

import java.util.Map;

import java.util.Map.Entry;

//java版计算signature签名public class SnCal {

        public static void main(String[] args) throws UnsupportedEncodingException,

                        NoSuchAlgorithmException {

                SnCal snCal = new SnCal();

// 计算sn跟参数对出现顺序有关,get请求请使用LinkedHashMap保存,该方法根据key的插入顺序排序;post请使用TreeMap保存,该方法会自动将key按照字母a-z顺序排序。所以get请求可自定义参数顺序(sn参数必须在最后)发送请求,但是post请求必须按照字母a-z顺序填充body(sn参数必须在最后)。以get请求为例:http://api.map.baidu.com/geocoder/v2/?address=百度大厦&output=json&ak=yourak,paramsMap中先放入address,再放output,然后放ak,放入顺序必须跟get请求中对应参数的出现顺序保持一致。

                Map paramsMap = new LinkedHashMap();

                paramsMap.put("address", "百度大厦");

                paramsMap.put("output", "json");

                paramsMap.put("ak", "yourak");

 

                // 调用下面的toQueryString方法,对LinkedHashMap内所有value作utf8编码,拼接返回结果address=%E7%99%BE%E5%BA%A6%E5%A4%A7%E5%8E%A6&output=json&ak=yourak

                String paramsStr = snCal.toQueryString(paramsMap);

 

                // 对paramsStr前面拼接上/geocoder/v2/?,后面直接拼接yoursk得到/geocoder/v2/?address=%E7%99%BE%E5%BA%A6%E5%A4%A7%E5%8E%A6&output=json&ak=yourakyoursk

                String wholeStr = new String("/geocoder/v2/?" + paramsStr + "yoursk");

 

                // 对上面wholeStr再作utf8编码

                String tempStr = URLEncoder.encode(wholeStr, "UTF-8");

 

                // 调用下面的MD5方法得到最后的sn签名7de5a22212ffaa9e326444c75a58f9a0

                System.out.println(snCal.MD5(tempStr));

        }

 

        // 对Map内所有value作utf8编码,拼接返回结果

        public String toQueryString(Map data)

                        throws UnsupportedEncodingException {

                StringBuffer queryString = new StringBuffer();

                for (Entry pair : data.entrySet()) {

                        queryString.append(pair.getKey() + "=");

                        queryString.append(URLEncoder.encode((String) pair.getValue(),

                                        "UTF-8") + "&");

                }

                if (queryString.length() > 0) {

                        queryString.deleteCharAt(queryString.length() - 1);

                }

                return queryString.toString();

        }

 

        // 来自stackoverflow的MD5计算方法,调用了MessageDigest库函数,并把byte数组结果转换成16进制

        public String MD5(String md5) {

                try {

                        java.security.MessageDigest md = java.security.MessageDigest

                                        .getInstance("MD5");

                        byte[] array = md.digest(md5.getBytes());

                        StringBuffer sb = new StringBuffer();

                        for (int i = 0; i < array.length; ++i) {

                                sb.append(Integer.toHexString((array[i] & 0xFF) | 0x100)

                                                .substring(1, 3));

                        }

                        return sb.toString();

                } catch (java.security.NoSuchAlgorithmException e) {

                }

                return null;

        }}

 

二、建立商圈字典

pom.xml 新增如下配置

        

            com.alibaba

            fastjson

            1.2.47

        

        

        

            ch.hsr

            geohash

            1.3.0

        

BusinessUtil

package cn.bw.dmp.util;

 

import com.alibaba.fastjson.JSON;

import com.alibaba.fastjson.JSONObject;

import org.apache.commons.httpclient.HttpClient;

import org.apache.commons.httpclient.methods.GetMethod;

import org.apache.commons.lang.StringUtils;

 

import java.io.UnsupportedEncodingException;

import java.net.URLEncoder;

import java.util.LinkedHashMap;

import java.util.Map;

 

public class BusinessUtil {

    public static String getBusniss(String lonAndLat) throws Exception{

        // 计算sn跟参数对出现顺序有关,get请求请使用LinkedHashMap保存,该方法根据key的插入顺序排序;post请使用TreeMap保存,该方法会自动将key按照字母a-z顺序排序。所以get请求可自定义参数顺序(sn参数必须在最后)发送请求,但是post请求必须按照字母a-z顺序填充bodysn参数必须在最后)。以get请求为例:http://api.map.baidu.com/geocoder/v2/?address=百度大厦&output=json&ak=yourakparamsMap中先放入address,再放output,然后放ak,放入顺序必须跟get请求中对应参数的出现顺序保持一致。

        Map paramsMap = new LinkedHashMap();

        //paramsMap.put("address", "百度大厦");

        paramsMap.put("callback", "renderReverse");

        paramsMap.put("location", lonAndLat);

        paramsMap.put("output", "json");

        paramsMap.put("pois", "1");

        paramsMap.put("extensions_town", "true");

        paramsMap.put("ak", "cZDWGxNBoUOsOusVflIqee2YD1CZmGdA");

        // 调用下面的toQueryString方法,对LinkedHashMap内所有valueutf8编码,拼接返回结果address=%E7%99%BE%E5%BA%A6%E5%A4%A7%E5%8E%A6&output=json&ak=yourak

        String paramsStr = toQueryString(paramsMap);

        // paramsStr前面拼接上/geocoder/v2/?,后面直接拼接yoursk得到/geocoder/v2/?address=%E7%99%BE%E5%BA%A6%E5%A4%A7%E5%8E%A6&output=json&ak=yourakyoursk

        String wholeStr = new String("/geocoder/v2/?" + paramsStr + "8ZhxmMycfBliDffZTITX5T13p7c8Bepw");

        // 对上面wholeStr再作utf8编码

        String tempStr = URLEncoder.encode(wholeStr, "UTF-8");

        String sn = MD5(tempStr);

        //String url = "http://api.map.baidu.com"+ tempStr + "&sn="+ sn;

        String url = "http://api.map.baidu.com/geocoder/v2/?"+paramsStr + "&sn=" + sn;

        //调用HttpClient访问Baidu LBS 百度地图开放平台

        HttpClient httpClient = new HttpClient();

        GetMethod get = new GetMethod(url);

        int status = httpClient.executeMethod(get);

        String business = "";

        if(status == 200){

            String response = get.getResponseBodyAsString();

            response = response.replaceAll("renderReverse&&renderReverse\\(","");

            response = response.substring(0,response.length()-1);

            JSONObject jo = JSON.parseObject(response);

            JSONObject result = jo.getJSONObject("result");

            //获取商圈

            business = result.getString("business");

            //如果商圈为空,获取具体的地址最小到镇

            if(StringUtils.isEmpty(business)){

                StringBuffer buffer = new StringBuffer();

                JSONObject addr = result.getJSONObject("addressComponent");

                String province = addr.getString("province");

                String city = addr.getString("city");

                String district = addr.getString("district");

                String town = addr.getString("town");

                if(StringUtils.isNotEmpty(province)){

                    buffer.append(province+";");

                }

                if(StringUtils.isNotEmpty(province)){

                    buffer.append(city+";");

                }

                if(StringUtils.isNotEmpty(province)){

                    buffer.append(district+";");

                }

                if(StringUtils.isNotEmpty(province)){

                    buffer.append(town);

                }

                business = buffer.toString();

            }

        }

        return business;

    }

 

    // Map内所有valueutf8编码,拼接返回结果

    public static  String toQueryString(Map data)

            throws UnsupportedEncodingException {

        StringBuffer queryString = new StringBuffer();

        for (Map.Entry pair : data.entrySet()) {

            queryString.append(pair.getKey() + "=");

            queryString.append(URLEncoder.encode((String) pair.getValue(),

                    "UTF-8") + "&");

        }

        if (queryString.length() > 0) {

            queryString.deleteCharAt(queryString.length() - 1);

        }

        return queryString.toString();

    }

 

    // 来自stackoverflowMD5计算方法,调用了MessageDigest库函数,并把byte数组结果转换成16进制

    public static String MD5(String md5) {

        try {

            java.security.MessageDigest md = java.security.MessageDigest

                    .getInstance("MD5");

            byte[] array = md.digest(md5.getBytes());

            StringBuffer sb = new StringBuffer();

            for (int i = 0; i < array.length; ++i) {

                sb.append(Integer.toHexString((array[i] & 0xFF) | 0x100)

                        .substring(1, 3));

            }

            return sb.toString();

        } catch (java.security.NoSuchAlgorithmException e) {

        }

        return null;

    }

 

    public static void main(String[] args) throws  Exception{

        System.out.println(BusinessUtil.getBusniss("40.499603,116.420812"));

    }

}

 

建立经纬度字典

package cn.bw.dmp.tools

import ch.hsr.geohash.GeoHash
import cn.bw.dmp.utils.{BusinessUtil, JedisUtil}
import org.apache.commons.lang.StringUtils
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
import redis.clients.jedis.{Jedis, JedisPool}

import scala.tools.scalap.scalax.util.StringUtil

/**
  * Created by zcw on 2018/10/15
  */
object LatLon2Bussiness {
  def main(args: Array[String]): Unit = {
    //1.参数的校验
    if(args.length != 1) {
      println(
        """
          |cn.bw.dmp.tools.LatLon2Bussiness
          |参数错误!!!
          |需要:LogInputPath
        """.stripMargin)
      sys.exit()
    }
      //2.接受参数
      val Array(logInputPath) = args
      //3.创建上下文
      val conf: SparkConf = new SparkConf().setAppName(s"${this.getClass.getSimpleName}").setMaster("local")
      val spark: SparkSession = SparkSession
        .builder()
        .config(conf)
        .config("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
        .getOrCreate()
    import spark.implicits._
      //4.读取并过滤数据
      spark.read.parquet(logInputPath)
        .select("lat","lon")
        .where("lat >= 3 and lat < 54 and lat != '' and lon >= 73 and lon <= 136 and lon != ''")
        .distinct()
          .foreachPartition(it =>{
            val jedis: Jedis = JedisUtil.getJedis
            it.foreach(row =>{
              val lat: String = row.getAs[String]("lat")
              val lon: String = row.getAs[String]("lon")
              //根据lat lon 去百度获取出商圈信息 "火焰山美食城,点点超市,花冠超市"
              val business: String = BusinessUtil.getBusinessByLatAndLon(lat +"," + lon)
              //使用GeoHash算法根据lat lon 获取GeoHashCode 作为可以
              val geocode: String = GeoHash.withCharacterPrecision(lat.toDouble,lon.toDouble,8).toBase32
              if(StringUtils.isNotEmpty(business)){
                jedis.set(geocode,business)
              }
            })
            jedis.close()
          })

      //关闭SparkSession
      spark.stop()
    }
}

 

 

三、商圈标签的开发

package cn.bw.dmp.tags

import ch.hsr.geohash.GeoHash
import org.apache.commons.lang.StringUtils
import org.apache.spark.sql.Row
import redis.clients.jedis.Jedis

import scala.collection.mutable

/**
  * Created by zcw on 2018/10/16
  */
object Tags4Business extends Tags {
  override def makeTag(args: Any*): Map[String, Int] = {
    var map:Map[String,Int] = Map[String,Int]()
    if(args.length == 2){
      val row: Row = args(0).asInstanceOf[Row]
      val jedis:Jedis = args(1).asInstanceOf[Jedis]
      val lat: String = row.getAs[String]("lat")
      val lon: String = row.getAs[String]("lon")
      if(StringUtils.isNotEmpty(lat) && StringUtils.isNotEmpty(lon)){
        //lat >= 3 and lat < 54 and lat != '' and lon >= 73 and lon <= 136
        val lat2 = lat.toDouble
        val lon2 = lon.toDouble
        if(lat2 >3 && lat2 < 54 && lon2 > 73 && lon2 < 136){
          val geoCode: String = GeoHash.withCharacterPrecision(lat2,lon2,8).toBase32
          val business: String = jedis.get(geoCode)
          if(StringUtils.isNotEmpty(business)){
            business.split(",").foreach(b => map += ("B" + b ->1))
          }
        }
      }
    }
    map
  }
}

 

 

四、将商圈标签合并上下文标签

 

package cn.bw.dmp.tags

import cn.bw.dmp.utils.{JedisUtil, OutputPathUtil, TagsUtil}
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}
import redis.clients.jedis.Jedis

import scala.collection.mutable.ListBuffer

/**
  * Created by zcw on 2018/10/10
  */
object ContextTag {
  def main(args: Array[String]): Unit = {
    //1.参数的校验
    if(args.length != 4){
      println(
        """
          |cn.bw.dmp.tags.ContextTag
          |参数错误!!!
          |需要:
          |LogInputPath
          |AppDicInputPath
          |StopWordsDicInputPath
          |ResultOutputPath
        """.stripMargin)
    }
    //2.接受参数
    val Array(logInputPath,appDicInputPath,stopWordsDicInputPath,resultOutputPath)  = args
    //3.创建长下文
    val conf: SparkConf = new SparkConf()
      .setAppName(s"${this.getClass.getSimpleName}")
      .setMaster("local")
      .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
    val sc: SparkContext = spark.sparkContext
    //读取app字典
    val appDic: Map[String, String] = sc.textFile(appDicInputPath).map(line => {
      val fields: Array[String] = line.split(":")
      (fields(0), fields(1))
    }).collect.toMap
    //将app字典广播出去
    val appDicBC: Broadcast[Map[String, String]] = sc.broadcast(appDic)
    //读取stopwords字典
    val stopwordsDic: Map[String, Int] = sc.textFile(stopWordsDicInputPath).map(line =>(line,1)).collect().toMap
    //将stopwords 字典广播出去
    val stopwordsDicBC: Broadcast[Map[String, Int]] = sc.broadcast(stopwordsDic)
    //4.读取parquet文件
    val rawDF: DataFrame = spark.read.parquet(logInputPath)
    //5.过滤出去用户唯一标识不存在的数据
    val filterdDS: Dataset[Row] = rawDF.where(TagsUtil.hasUserIdCondition)
    import spark.implicits._
    //6.打标签
    val tagedRDD: RDD[(String, List[(String, Int)])] = filterdDS.mapPartitions(it => {
      val jedis: Jedis = JedisUtil.getJedis
      var list = new ListBuffer[(String, List[(String, Int)])]()
      it.foreach(row => {
        //打广告的标签
        val tagsAds: Map[String, Int] = Tags4Ads.makeTag(row)
        //app标签
        val tagsApp: Map[String, Int] = Tags4App.makeTag(row, appDicBC.value)
        //设备标签
        val tagsDevice: Map[String, Int] = Tags4Device.makeTag(row)
        //关键词标签
        val tagKeyWords: Map[String, Int] = Tags4KeyWords.makeTag(row, stopwordsDicBC.value)
        //地域标签
        val tagArea: Map[String, Int] = Tags4Area.makeTag(row)
        //商圈标签
        val tagBusiness: Map[String, Int] = Tags4Business.makeTag(row, jedis)
        //获取用户的唯一标识
        val buffer: ListBuffer[String] = TagsUtil.getAllUserId(row)
        list.append()
        val tuple: (String, List[(String, Int)]) = (buffer(0), (tagsAds ++ tagsApp ++ tagsDevice ++ tagKeyWords ++ tagArea ++ tagBusiness).toList)
        list.append(tuple)
      })
      jedis.close()
      list.iterator
    }).rdd
    //聚合
    val reduceRDD: RDD[(String, List[(String, Int)])] = tagedRDD.reduceByKey((a, b) => {
      //List(("K偶像剧",1),("K偶像剧",1),("ZP河北",1))
      //方式一
      //(a ++ b).groupBy(_._1).mapValues(_.length).toList
      //方式二
      //(a ++ b).groupBy(_._1).mapValues(_.foldLeft(0)(_+_._2)).toList
      //方式三
      (a ++ b).groupBy(_._1).map{
        case (k,v) => (k,v.foldLeft(0)(_+_._2))
      }.toList
    })
    //将数据写入到磁盘
    OutputPathUtil.deleteOutputPath(resultOutputPath,sc)
    reduceRDD.saveAsTextFile(resultOutputPath)
    //关闭SparkSession
    spark.stop()
  }

}

 

你可能感兴趣的:(商圈标签)