初等证明:如果n为正整数,那么其每个因子的因子个数之和的平方等于其每个因子的因子个数的立方之和

题:如果 n n n为正整数,那么 ( ∑ d ∣ n τ ( d ) ) 2 = ∑ d ∣ n τ ( d ) 3 (\sum_{d|n}\tau(d))^2 = \sum_{d|n}\tau(d)^3 (dnτ(d))2=dnτ(d)3
(摘自《初等数论及其应用》第六版7.2节习题)

前言:通过观察这两个式子,结合已知的定理
( m , n ) = 1 ⇒ τ ( m n ) = τ ( m ) τ ( n ) (m,n) = 1 \Rightarrow \tau(mn) = \tau(m)\tau(n) (m,n)=1τ(mn)=τ(m)τ(n)
从而推断出是否等式两边都满足乘性检验
如果满足则只需要证明 n = p a n = p^a n=pa的单个素因子情况即可
而经过推算,确实满足上述猜想

证:设 f ( n ) = ( ∑ d ∣ n τ ( d ) ) 2 f(n) = (\sum_{d|n}\tau(d))^2 f(n)=(dnτ(d))2,且 ( m , n ) = 1 (m, n) = 1 (m,n)=1

f ( m n ) = ( ∑ d ∣ m n τ ( d ) ) 2 f(mn) = (\sum_{d|mn}\tau(d))^2 f(mn)=(dmnτ(d))2

= ( ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 d 2 ) ) 2 = (\sum_{d_1|m, d_2|n}\tau(d_1d_2))^2 =(d1m,d2nτ(d1d2))2

= ( ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 ) τ ( d 2 ) ) 2 = (\sum_{d_1|m, d_2|n}\tau(d_1)\tau(d_2))^2 =(d1m,d2nτ(d1)τ(d2))2

= ( ∑ d 1 ∣ m τ ( d 1 ) ∑ d 2 ∣ n τ ( d 2 ) ) 2 = (\sum_{d_1|m} \tau(d_1)\sum_{d_2|n}\tau(d_2))^2 =(d1mτ(d1)d2nτ(d2))2

= ( ∑ d 1 ∣ m τ ( d 1 ) ) 2 ( ∑ d 2 ∣ n τ ( d 2 ) ) 2 = (\sum_{d_1|m} \tau(d_1))^2(\sum_{d_2|n}\tau(d_2))^2 =(d1mτ(d1))2(d2nτ(d2))2

= f ( m ) f ( n ) = f(m)f(n) =f(m)f(n)

同样设 g ( n ) = ∑ d ∣ n τ ( d ) 3 g(n) = \sum_{d|n}\tau(d)^3 g(n)=dnτ(d)3,且 ( m , n ) = 1 (m, n) = 1 (m,n)=1

g ( m n ) = ∑ d ∣ m n τ ( d ) 3 g(mn) = \sum_{d|mn}\tau(d)^3 g(mn)=dmnτ(d)3

= ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 d 2 ) 3 = \sum_{d_1|m, d_2|n}\tau(d_1d_2)^3 =d1m,d2nτ(d1d2)3

= ∑ d 1 ∣ m , d 2 ∣ n τ ( d 1 ) 3 τ ( d 2 ) 3 = \sum_{d_1|m, d_2|n}\tau(d_1)^3\tau(d_2)^3 =d1m,d2nτ(d1)3τ(d2)3

= ∑ d 1 ∣ m τ ( d 1 ) 3 ∑ d 2 ∣ n τ ( d 2 ) 3 = \sum_{d_1|m}\tau(d_1)^3 \sum_{d_2|n}\tau(d_2)^3 =d1mτ(d1)3d2nτ(d2)3

= g ( m ) g ( n ) = g(m)g(n) =g(m)g(n)

∴ \therefore f ( n ) f(n) f(n) g ( n ) g(n) g(n)都满足乘性检验
∴ \therefore 如果对于 n = p a n = p^a n=pa等式成立,则结合上述结果可得命题成立

∵ f ( p a ) = ( ∑ d ∣ p a τ ( d ) ) 2 \because f(p^a) = (\sum_{d|p^a}\tau(d))^2 f(pa)=(dpaτ(d))2

= ( ∑ i = 0 a i + 1 ) 2 = (\sum_{i = 0}^{a}i+1)^2 =(i=0ai+1)2

= ( a + 1 ) 2 ( a + 2 ) 2 4 = \frac{(a+1)^2(a+2)^2}{4} =4(a+1)2(a+2)2

∵ g ( p a ) = ∑ d ∣ p a τ ( d ) 3 \because g(p^a) = \sum_{d|p^a}\tau(d)^3 g(pa)=dpaτ(d)3

= ∑ i = 0 a ( i + 1 ) 3 = \sum_{i = 0}^{a}(i+1)^3 =i=0a(i+1)3

这里需要求出 ∑ i = 1 n i 3 \sum_{i = 1}^{n}i^3 i=1ni3,就记忆而言早已不复存在,我也从不特意背或者记下定理和等式,而是大概记得有这么个等式或者定理及其论证要点,而论证要点才是最重要的,如果这个也记不得,那么最好自己也推导一遍,而这并不是重复造轮胎,如果不明白不了解不清楚甚至不知其论证依据而死记硬背其结论,又有何颜面站在伟人的肩膀上呢?而这里的幂次求和,可根据其高一阶的相邻数的差得到,即

∵ ( k + 1 ) 4 − k 4 = 4 k 3 + 6 k 2 + 4 k + 1 \because (k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1 (k+1)4k4=4k3+6k2+4k+1

∴ ∑ i = 1 n ( i + 1 ) 4 − i 4 \therefore \sum_{i = 1}^{n}(i+1)^4-i^4 i=1n(i+1)4i4

= ( n + 1 ) 4 − 1 = (n+1)^4 - 1 =(n+1)41

= ∑ i = 1 n ( 4 i 3 + 6 i 2 + 4 i + 1 ) = \sum_{i=1}^{n}(4i^3 + 6i^2 + 4i + 1) =i=1n(4i3+6i2+4i+1)

这里需要求出 ∑ i = 1 n i 2 \sum_{i=1}^{n}i^2 i=1ni2,同样根据高一阶相邻差计算,即

∵ ( k + 1 ) 3 − k 3 = 3 k 2 + 3 k + 1 \because (k+1)^3 - k^3 = 3k^2 + 3k + 1 (k+1)3k3=3k2+3k+1

∴ ∑ i = 1 n ( i + 1 ) 3 − i 3 \therefore \sum_{i = 1}^{n}(i+1)^3-i^3 i=1n(i+1)3i3

= ( n + 1 ) 3 − 1 = (n+1)^3 - 1 =(n+1)31

= ∑ i = 1 n ( 3 i 2 + 3 i + 1 ) = \sum_{i=1}^{n}(3i^2 + 3i + 1) =i=1n(3i2+3i+1)

∴ ∑ i = 1 n ( 6 i 2 + 4 i + 1 ) \therefore \sum_{i=1}^{n}(6i^2 + 4i + 1) i=1n(6i2+4i+1)

= 2 ( n + 1 ) 3 − 2 − ∑ i = 1 n 2 i − n = 2(n+1)^3 - 2 - \sum_{i = 1}^{n}2i - n =2(n+1)32i=1n2in

= 2 ( n + 1 ) 3 − 2 − n ( n + 1 ) − n = 2(n+1)^3 - 2 - n(n+1) - n =2(n+1)32n(n+1)n

= 2 ( n + 1 ) 3 − n ( n + 1 ) − ( n + 1 ) − 1 = 2(n+1)^3 - n(n+1) - (n+1) - 1 =2(n+1)3n(n+1)(n+1)1

= 2 ( n + 1 ) 3 − ( n + 1 ) 2 − 1 = 2(n+1)^3 - (n+1)^2 - 1 =2(n+1)3(n+1)21

= ( 2 n + 1 ) ( n + 1 ) 2 − 1 = (2n+1)(n+1)^2 - 1 =(2n+1)(n+1)21

∴ ∑ i = 1 n 4 i 3 \therefore \sum_{i = 1}^{n}4i^3 i=1n4i3

= ( n + 1 ) 4 − 1 − [ ( 2 n + 1 ) ( n + 1 ) 2 − 1 ] = (n+1)^4 - 1 - [(2n+1)(n+1)^2 - 1] =(n+1)41[(2n+1)(n+1)21]

= ( n + 1 ) 4 − ( 2 n + 1 ) ( n + 1 ) 2 = (n+1)^4 - (2n+1)(n+1)^2 =(n+1)4(2n+1)(n+1)2

= ( n + 1 ) 2 [ ( n + 1 ) 2 − ( 2 n + 1 ) ] = (n+1)^2[(n+1)^2 - (2n + 1)] =(n+1)2[(n+1)2(2n+1)]

= n 2 ( n + 1 ) 2 = n^2(n+1)^2 =n2(n+1)2

∴ ∑ i = 1 n i 3 = n 2 ( n + 1 ) 2 4 \therefore \sum_{i = 1}^{n}i^3 = \frac{n^2(n+1)^2}{4} i=1ni3=4n2(n+1)2

继续证明

∴ g ( p a ) = ∑ d ∣ p a τ ( d ) 3 \therefore g(p^a) = \sum_{d|p^a}\tau(d)^3 g(pa)=dpaτ(d)3

= ∑ i = 0 a ( i + 1 ) 3 = \sum_{i = 0}^{a}(i+1)^3 =i=0a(i+1)3

= ∑ i = 1 a + 1 i 3 = \sum_{i = 1}^{a+1}i^3 =i=1a+1i3

= ( a + 1 ) 2 ( a + 2 ) 2 4 = \frac{(a+1)^2(a+2)^2}{4} =4(a+1)2(a+2)2

= f ( p a ) = f(p^a) =f(pa)

n = p 1 a 1 p 2 a 2 . . . p m a m n = p_1^{a_1}p_2^{a_2}...p_m^{a_m} n=p1a1p2a2...pmam

∴ f ( n ) = f ( p 1 a 1 p 2 a 2 . . . p m a m ) \therefore f(n) = f(p_1^{a_1}p_2^{a_2}...p_m^{a_m}) f(n)=f(p1a1p2a2...pmam)

= f ( p 1 a 1 ) f ( p 2 a 2 ) . . . f ( p m a m ) = f(p_1^{a_1})f(p_2^{a_2})...f(p_m^{a_m}) =f(p1a1)f(p2a2)...f(pmam)

= g ( p 1 a 1 ) g ( p 2 a 2 ) . . . g ( p m a m ) = g(p_1^{a_1})g(p_2^{a_2})...g(p_m^{a_m}) =g(p1a1)g(p2a2)...g(pmam)

= g ( p 1 a 1 p 2 a 2 . . . p m a m ) = g(p_1^{a_1}p_2^{a_2}...p_m^{a_m}) =g(p1a1p2a2...pmam)

= g ( n ) = g(n) =g(n)

综上所述,命题得证

你可能感兴趣的:(我的数论)