- K-means 算法的介绍与应用
小魏冬琅
matlab算法kmeans机器学习
目录引言K-means算法的基本原理表格总结:K-means算法的主要步骤K-means算法的MATLAB实现优化方法与改进K-means算法的应用领域表格总结:K-means算法的主要应用领域结论引言K-means算法是一种经典的基于距离的聚类算法,在数据挖掘、模式识别、图像处理等多个领域中得到了广泛应用。其核心思想是将相似的数据对象聚类到同一个簇中,而使得簇内对象的相似度最大、簇间的相似度最小
- OpenCV3最常用的基本操作
HeoLis
OpenCV介绍OpenCV的全称是OpenSourceComputerVisionLibrary,是一个跨平台的计算机视觉库。OpenCV是由英特尔公司发起并参与开发,以BSD许可证授权发行,可以在商业和研究领域中免费使用。OpenCV可用于开发实时的图像处理、计算机视觉以及模式识别程序。该程序库也可以使用英特尔公司的IPP进行加速处理。以上是维基百科关于OpenCV的介绍,简单来说它就是处理图
- EI检索-机器视觉、图像处理与影像技术国际学术会议(MVIPIT 2023)邀您参会!
诗远Yolanda
图像处理人工智能计算机视觉
机器视觉是计算机学科的一个重要分支,它综合了光学、机械、电子、计算机软硬件等方面的技术,涉及到计算机、图像处理、模式识别、人工智能、信号处理、光机电一体化等多个领域。而图像处理等技术的快速发展也推动了机器视觉的发展。机器视觉在我国具有广泛的工业应用,核心功能包括:测量,检测,识别,定位等。第一届机器视觉、图像处理与影像技术国际学术会议(MVIPIT2023)将于2023年7月26日-28日在浙江杭
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 图形几何算法 -- 凸包算法
CAD三维软件二次开发
算法学习算法c#3d几何学
前言常用凸包算法包括GrahamScan算法和JarvisMarch(GiftWrapping)算法,在这里要简单介绍的是GrahamScan算法。1、概念凸包是一个点集所包围的最小的凸多边形。可以想象用一根绳子围绕着一群钉子,绳子所形成的轮廓便是这些钉子的凸包。在计算几何中,凸包得到了广泛的应用,涉及领域包括模式识别、图像处理和优化问题等。2、算法原理凸包算法的目标是从给定的点集(在二维平面中)
- 深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
Mr' 郑
深度学习pytorch神经网络
引言深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch是一个强大的深度学习框架,它提供了灵活的API和动态计算图,非常适合初学者和研究者使用。安装PyTorch确保安装了Python和pip。然后通过以下命令安装PyTorch:pipinstalltorchtorchvision导入库我们需要导入一些必要的库:importtorchimpo
- 机器学习算法深度总结(5)-逻辑回归
婉妃
1.模型定义逻辑回归属于基于概率分类的学习法.基于概率的模式识别是指对模式x所对应的类别y的后验概率禁行学习.其所属类别为后验概率最大时的类别:预测类别的后验概率,可理解为模式x所属类别y的可信度.逻辑回归(logistic),使用线性对数函数对分类后验概率进行模型化:上式,分母是满足概率总和为1的约束条件的正则化项,参数向量维数为:考虑二分类问题:使用上述关系式,logistic模型的参数个数从
- 计算机视觉概念科普
极客代码
玩转AI人工智能图像处理计算机视觉深度学习
计算机视觉(ComputerVision,CV)是一门多学科交叉的科学,旨在让计算机具备“看”的能力,即通过图像或视频数据来理解世界。它结合了信号处理、图像处理、模式识别、机器学习等多个领域的技术,让计算机能够执行诸如识别、分类、追踪等复杂的视觉任务。本文将深入探讨计算机视觉的核心概念和技术。一、计算机视觉概述计算机视觉是一门研究如何让计算机“看”世界并从中获取信息的科学。它主要关注如何处理、分析
- 机器学习(ML)算法分类
活蹦乱跳酸菜鱼
机器学习
机器学习(ML)算法是一个广泛而多样的领域,涵盖了多种用于数据分析和模式识别的技术。以下是一些常见的机器学习算法分类及其具体算法:一、监督学习算法监督学习算法使用标记(即已知结果)的训练数据来训练模型,以便对新数据进行预测。线性回归:用于建立连续变量之间的关系,通过拟合一条直线或超平面来预测新数据的输出值。逻辑回归:虽然名称中包含“回归”,但实际上是用于分类问题,特别是二分类问题。通过将线性回归模
- 让数据说话:人工智能与六西格玛的完美结合
张驰课堂
人工智能六西格玛
当人工智能与六西格玛结合,企业可以充分利用人工智能技术的数据处理、预测分析和智能决策支持能力,实现数据驱动的决策、质量控制和流程优化,从而提高企业的效率和竞争力。下面张驰咨询给大家具体的介绍:1、数据驱动决策六西格玛侧重于数据分析和决策制定,而人工智能可以提供更强大的数据处理和分析能力。通过人工智能技术,可以自动收集和整理大量的数据,并进行有效的数据挖掘和模式识别。这些数据分析结果可以为六西格玛项
- 神经网络(深度学习,计算机视觉,得分函数,损失函数,前向传播,反向传播,激活函数)
MarkHD
深度学习神经网络计算机视觉
神经网络,特别是深度学习,在计算机视觉等领域有着广泛的应用。以下是关于你提到的几个关键概念的详细解释:神经网络:神经网络是一种模拟人脑神经元结构的计算模型,用于处理复杂的数据和模式识别任务。它由多个神经元(或称为节点)组成,这些神经元通过权重和偏置进行连接,并可以学习调整这些参数以优化性能。深度学习:深度学习是神经网络的一个子领域,主要关注于构建和训练深度神经网络(即具有多个隐藏层的神经网络)。通
- 基于Python和OpenCV的产品码识别与验证案例
GT开发算法工程师
pythonopencv开发语言人工智能计算机视觉
引言:本案例展示了如何使用Python结合OpenCV库来实现产品码的识别与验证。首先,通过图像预处理技术(如灰度化、二值化、降噪等)优化产品码图像,然后利用OpenCV中的模板匹配或机器学习算法(如SVM、神经网络等)来定位并识别产品码。目录原理:代码部分:注意:原理:产品码识别与验证的核心在于图像处理与模式识别技术。首先,通过图像处理技术提取出产品码区域,去除背景干扰,增强产品码的可识别性。然
- 《模式识别与机器学习》第一章
CS_Zero
机器学习人工智能
C1符号含义x\boldxx:向量,曲线拟合问题中的x坐标数值序列。元素个数为N。t\boldtt:向量,曲线拟合问题中的y坐标(target)数值序列。w\boldww:向量,曲线拟合问题中的待估计的参数,即M阶多项式的各阶系数。β\betaβ:标量,协方差的倒数,表示样本的精度。α\alphaα:标量,同上,曲线拟合例子中的先验的精度。多项式曲线拟合E(w)=12∑n=1N{y(xn,w)−t
- 六、图像的几何变换
云峰天际
计算机视觉人工智能opencv人工智能计算机视觉
文章目录前言一、镜像变换二、缩放变换前言在计算机视觉中,图像几何变换是指对图像进行平移、旋转、缩放、仿射变换和镜像变换等操作,以改变图像的位置、尺寸、形状或视角,而不改变图像的内容。这些变换在图像处理、模式识别、机器人视觉、医学影像处理等领域具有广泛的应用。通过图像几何变换,可以实现图像的校正、配准、增强和重建等功能,为后续的图像分析和理解提供了重要的基础。一、镜像变换水平镜像(水平翻转)其原理是
- RBF神经网络中的RBF的英文全称是什么,是用来干什么的?
神笔馬良
神经网络人工智能深度学习
问题描述:RBF神经网络中的RBF的英文全称是什么,是用来干什么的?问题解答:RBF神经网络中的RBF是径向基函数(RadialBasisFunction)的缩写。径向基函数是一种在机器学习和模式识别中常用的函数类型,它们通常用于构建非线性模型。在RBF神经网络中,径向基函数被用作隐藏层的激活函数,用来将输入数据从输入空间映射到一个高维的特征空间,从而实现非线性的数据拟合和模式识别。具体来说,径向
- 用脑想问题还是用心驱动脑?
风口猪炒股指标
抢财猫股票课堂我的思想大火拼脑心关系
昨天回答了几个朋友的问题,我发现提问题的人很少,这让我想起之前讲的小妞子的故事,我问了她好几个月的同一句话:你有问题吗?结果她很反感,嘿嘿。其实吧,我讲的很多东西都是实的,反而我们感知不到的日常以为真的东西其实是不真实的。比如说眼见为实,真正是眼睛看到的是你认识的真实的吗?不是,因为你脑子里有模式识别了才被识别出来,如果脑子里没有模式就无法识别,即便眼睛看到了也会忽略掉。那追问下去,如果脑子无法识
- 【专题】2023年中国手术机器人行业专题报告PDF合集分享(附原数据表)
原文链接:https://tecdat.cn/?p=34144仿生机器人作为一类结合了仿生学原理的机器人,具备自主决策和规划行动的能力,正逐渐进入大众视野。它们的核心技术要素包括感知与认知技术、运动与控制技术、人机交互技术和自主决策技术。阅读原文,获取专题报告合集全文,解锁文末68份仿生机器人相关行业研究报告。感知与认知技术涵盖了各种传感器的应用、模式识别和情感理解等高级认知能力,而运动与控制技术
- 计算机视觉主要知识点
superdont
计算机视觉人工智能
计算机视觉是指利用计算机和算法来解析和理解图片和视频中的内容。这是一个跨学科领域,融合了计算机科学、图像处理、机器学习和模式识别等多方面的技术。以下是一些计算机视觉入门的基本知识点:图像基础:像素:图片的最基本组成单元,包含了颜色信息。色彩空间:如RGB(红、绿、蓝)、HSV(色调、饱和度、明度)等,不同色彩空间代表图像色彩的方式不同。图像类型:位图(Bitmap)与矢量图(Vector),位图由
- 探索未来:集成存储器计算(IMC)与深度神经网络(DNN)的机遇与挑战
繁依Fanyi
dnn人工智能神经网络深度学习机器学习gitwindows
开篇部分:人工智能、深度神经网络与内存计算的交汇在当今数字化时代,人工智能(AI)已经成为科技领域的一股强大力量,而深度神经网络(DNN)则是AI的核心引擎之一。DNN是一种模仿人类神经系统运作方式的计算模型,通过层层堆叠的神经元网络来实现复杂的模式识别和数据处理任务。从图像识别、语音识别到自然语言处理,DNN已经在各个领域展现了惊人的能力。然而,随着DNN模型的不断演进和复杂化,对计算资源的需求
- 机器学习系列——(十七)聚类
飞影铠甲
机器学习机器学习聚类人工智能
引言在当今数据驱动的时代,机器学习已经成为了解锁数据潜能的关键技术之一。其中,聚类作为机器学习领域的一个重要分支,广泛应用于数据挖掘、模式识别、图像分析等多个领域。本文旨在深入探讨聚类技术的原理、类型及其应用,为读者提供一个全面而深入的了解。一、什么是聚类?聚类是一种无监督学习(UnsupervisedLearning)技术,它的目标是将相似的对象分组到一起,形成簇(Cluster)。与有监督学习
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- 探秘深度学习的巅峰之作:ResNet101与其在图像识别领域的革命性应用
程序员Chino的日记
深度学习人工智能
引言深度学习和图像识别的世界已经被深度卷积神经网络的引入所革命化,而在这些网络中,ResNet101架构作为一个重要的里程碑脱颖而出。本文旨在详细探讨ResNet101架构、其设计、功能和应用。ResNet革命2015年在计算机视觉和模式识别会议(CVPR)上介绍的ResNet(残差网络)家族,标志着深度学习图像识别的一个转折点。这些网络引入了残差学习的概念,解决了深度神经网络中的梯度消失问题,使
- LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?
电力系统爱好者
lstm人工智能rnn
LSTM进行时间序列预测还有哪些创新点,有什么推荐的好发论文的模型和代码?时间序列分析是处理时间相关数据的一种方法,常用于预测、趋势分析和模式识别等应用。下面是一些常见的时间序列分析方法和相应的MATLAB代码示例:移动平均法:%计算简单移动平均data=[1,2,3,4,5,6];windowSize=3;movingAverage=movmean(data,windowSize);自回归模型(
- 机器学习简要概述
@Duang~
机器学习机器学习人工智能算法
一、基本概念及应用传统机器学习算法首先需要对数据进行特征提取,采用分类器(如决策树、人工神经网络、贝叶斯、集成学习、支持向量机等)进行分类。机器学习:特征提取+分类器分类特征提取难,制约发展。深度学习出现,一定程度解决了特征提取的难题,机器学习繁荣起来。机器学习+数据库=数据挖掘+工业应用=模式识别+图像处理=机器视觉+语音处理=语音识别+文本处理=自然语言处理二、数据集及模型数据集的划分:方法:
- 大脑的工作原理
珊珊_带你重返年轻
今天继续阅读《微习惯》第二章,大脑的工作原理。今天这一章有点烧脑。大脑分成两个部分-潜意识部分和意识部分。重复就是(潜意识)大脑使用的语言。建立习惯的目标是用重复来改变大脑。事实上改变习惯的两个关键点是重复和回报,如果有回报,大脑更愿意重复做一件事。我们的行为中有45%是自动完成的,无须思考的。大脑是由执行决策和进行自动行为模式识别的两部分组成的系统。前额皮层的管理功能相当活跃,反应灵敏,但同时也
- 计算机视觉比较有名的期刊和会议
anycedo
中文SCI级:《物理学报》《红外与毫米波学报》etc.(IF比较低,也不是特别专门针对计算机视觉)EI级:《自动化学报》《光学精密工程》《电子学报》《软件学报》《计算机研究与发展》《计算机学报》《计算机辅助设计与图形学学报》《系统工程与电子技术》、一些大学的学报,etc.(质量参差不齐)中文核心《中国图象图形学报》《模式识别与人工智能》《机器人》《图学学报》《电光与控制》etc.国际会议1.ICC
- 工信部颁发的《计算机视觉处理设计开发工程师》中级证书
人工智能技术与咨询
人工智能计算机视觉自然语言处理
计算机视觉(ComputerVision)是一门研究如何让计算机能够理解和分析数字图像或视频的学科。简单来说,计算机视觉的目标是让计算机能够像人类一样对视觉信息进行处理和理解。为实现这个目标,计算机视觉结合了图像处理、机器学习、模式识别、计算几何等多个领域的理论和技术。计算机视觉在许多领域和行业中具有广泛应用,如自动驾驶、医疗影像分析、无人机、智能监控、虚拟现实(VR)和增强现实(AR)等。随着深
- 【大厂AI课学习笔记】1.5 AI技术领域(2)语音识别
giszz
学习笔记人工智能人工智能学习笔记
今天来梳理语音识别相关的关键技术和发展脉络。语音识别:定义、关键技术、技术发展、应用场景与商业化成功一、语音识别的定义语音识别,也称为自动语音识别(ASR),是指将人类的语音转换为机器可读的文本或命令的技术。它是人机交互的重要组成部分,旨在让计算机能够理解并执行人类的语音指令。语音识别技术涉及到信号处理、模式识别、自然语言处理等多个领域的知识。二、关键技术信号处理和特征提取:语音信号是一种复杂的时
- 深度学习在智能交互中的应用:人与机器的和谐共生
wd90119
深度学习人工智能
深度学习与人类的智能交互是当前人工智能领域研究的热点之一。深度学习作为机器学习的一个重要分支,具有强大的特征学习和模式识别能力,可以模拟人脑的神经网络进行数据分析和预测。而人类的智能交互则是指人类与机器之间的信息交流和操作互动,包括语音识别、图像识别、自然语言处理等技术。深度学习与人类的智能交互相结合,可以实现更加自然、高效和智能的人机交互方式。例如,通过深度学习的语音识别技术,机器可以理解和识别
- 深度学习的进展
csdn_aspnet
深度学习人工智能
一、深度学习的基本原理和算法:深度学习是一种基于神经网络的机器学习方法,其基本原理是模仿人脑神经网络的结构和功能,通过多层次的神经网络模型来实现对数据的学习和模式识别。以下是深度学习的基本原理和算法:1、输入层:深度学习的输入层接收原始数据,这可以是图像、文本、音频等各种形式的数据。2、隐藏层:深度学习的核心是多层的隐藏层。每一层都由大量的神经元(节点)组成,每个神经元都与上一层的所有神经元相连,
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla