/* * [题意] * 有n个格子需要填色,有6种颜色(设为123456),要求: * 1、填完后要对称 * 2、相邻不能同色 * 3、不可出现123456的情况 * [解题方法] * 由于是对称所以只要处理前(n+1)/2个,翻过去即可(注意此时不可出现654321,因为要翻过去) * 即令n=(n+1)/2求解即可 *!设f(n,x):长度为n的以x结尾的合法颜色串个数 * 所以由题意得: * 1、f(n,1) = f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,5)+f(n-1,6) - f(n-1,65432) * 2、f(n,2) = f(n-1,1)+f(n-1,3)+f(n-1,4)+f(n-1,5)+f(n-1,6) * 3、f(n,3) = f(n-1,1)+f(n-1,2)+f(n-1,4)+f(n-1,5)+f(n-1,6) * 4、f(n,4) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,5)+f(n-1,6) * 5、f(n,5) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,6) * 6、f(n,6) = f(n-1,1)+f(n-1,2)+f(n-1,3)+f(n-1,4)+f(n-1,5) - f(n-1,12345) * * 7、f(n,12) = f(n-1,1) * 8、f(n,123) = f(n-1,12) * 9、f(n,1234) = f(n-1,123) * 10、f(n,12345) = f(n-1,1234) * * 11、f(n,65) = f(n-1,6) * 12、f(n,654) = f(n-1,65) * 13、f(n,6543) = f(n-1,654) * 14、f(n,65432) = f(n-1,6543) * * 所以有矩阵: * |0 1 1 1 1 1 0 0 0 0 0 0 0 -1| |f(n-1,1) | |f(n,1) | * |1 0 1 1 1 1 0 0 0 0 0 0 0 0 | |f(n-1,2) | |f(n,2) | * |1 1 0 1 1 1 0 0 0 0 0 0 0 0 | |f(n-1,3) | |f(n,3) | * |1 1 1 0 1 1 0 0 0 0 0 0 0 0 | |f(n-1,4) | |f(n,4) | * |1 1 1 1 0 1 0 0 0 0 0 0 0 0 | |f(n-1,5) | |f(n,5) | * |1 1 1 1 1 0 0 0 0 -1 0 0 0 0 | |f(n-1,6) | |f(n,6) | * |1 0 0 0 0 0 0 0 0 0 0 0 0 0 | * |f(n-1,12) | = |f(n,12) | * |0 0 0 0 0 0 1 0 0 0 0 0 0 0 | |f(n-1,123) | |f(n,123) | * |0 0 0 0 0 0 0 1 0 0 0 0 0 0 | |f(n-1,1234) | |f(n,1234) | * |0 0 0 0 0 0 0 0 1 0 0 0 0 0 | |f(n-1,12345) | |f(n,12345) | * |0 0 0 0 0 1 0 0 0 0 0 0 0 0 | |f(n-1,65) | |f(n,65) | * |0 0 0 0 0 0 0 0 0 0 1 0 0 0 | |f(n-1,654) | |f(n,654) | * |0 0 0 0 0 0 0 0 0 0 0 1 0 0 | |f(n-1,6543) | |f(n,6543) | * |0 0 0 0 0 0 0 0 0 0 0 0 1 0 | |f(n-1,65432) | |f(n,65432) | * 答案 = f(n,1) + f(n,2) + f(n,3) + f(n,4) + f(n,5) + f(n,6) */ #include#include #include using namespace std; #define M 15 #define LL long long #define FF(i, n) for(int i = 0; i < n; i++) int ans[M], mod = 112233; int ret[M][M], C[M][M]; int init[M][M]; void ini() { memset(ans, 0, sizeof(ans)); memset(init, 0, sizeof(init)); FF(i, 6) { ans[i] = 1; FF(j, 6) if (i != j) init[i][j] = 1; } init[5][9] = -1; init[6][0] = init[7][6] = init[8][7] = init[9][8] = 1; init[0][13] = -1; init[10][5] = init[11][10] = init[12][11] = init[13][12] = 1; } void matmul(int a[][M], int b[][M], int n) { int tp[M][M] = {0}; FF(i, n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j]) tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod; FF(i, n) FF(j, n) a[i][j] = tp[i][j]; } void matmul(int a[], int b[][M], int n) { int tp[M] = {0}; FF(j, n) if(a[j]) FF(i, n) if(b[i][j]) tp[i] = (tp[i] + (LL)b[i][j]*a[j]) % mod; FF(i, n) a[i] = tp[i]; } void qmod(int n, int b) { FF(i, n) FF(j, n) ret[i][j] = (i==j); for ( ; b; b >>= 1) { if (b & 1) matmul(ret, init, n); matmul(init, init, n); } } int main() { int n; while (cin >> n) { if (n % 2 == 0) { puts("0"); continue; } n /= 2; ++n; ini(); qmod(14, n-1); matmul(ans, ret, 14); int sum = 0; FF(i, 6) sum = (sum + ans[i]) % mod; cout << (sum+mod)%mod << endl; } return 0; }