- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 动态规划:数字三角形(线性DP-闫氏DP分析法)
Zephyrtoria
数据结构与算法动态规划java算法
动态规划:数字三角形(线性DP-闫氏DP分析法)数字三角形www.acwing.com/problem/content/900/DP:状态表示:f[i][j]集合:只用前iii层,且用了该层第jjj个数字的所有方案属性:maxvalue状态计算:f[i][j]=max(f[i−1][j−1],f[i−1][j])+arr[i][j]f[i][j]=max(f[i-1][j-1],f[i-1][j]
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- C语言实现4x4矩阵乘法的详细教程
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:矩阵乘法是线性代数的基本操作,在计算机科学的多个领域中有广泛应用。本文详细解释了如何用C语言编写程序来实现两个4x4矩阵的乘法。我们将探讨矩阵乘法的数学原理,并通过C语言的二维数组和嵌套循环来编写代码。该程序将为学习线性代数和C语言编程提供一个实践案例。1.矩阵乘法的数学原理矩阵乘法不仅在线性代数中占据着重要地位,也是计算机科学中不可或缺的一部分。了解矩阵乘法
- MIT线性代数第三讲笔记
可耳(keer)
线性代数笔记
视频链接https://www.youtube.com/watch?v=FX4C-JpTFgY3.1矩阵乘法以A∗B=CA*B=CA∗B=C为例,其中矩阵A是m∗nm*nm∗n,矩阵B是n∗pn*pn∗p,矩阵C则是m∗pm*pm∗p单个元素求矩阵C中的每一个元素,公式如下:cij=∑k=1naik∗bkjc_{ij}=\sum_{k=1}^na_{ik}*b_{kj}cij=k=1∑naik∗b
- CUDA核函数优化进阶:利用Shared Memory实现矩阵计算10倍加速
AI咸鱼保护协会
人工智能深度学习AI矩阵CUDA
在NVIDIAA100上优化1024×1024矩阵乘法时,共享内存策略将计算速度从3.2TFLOPS提升至31.5TFLOPS——本文将揭示如何通过内存访问优化突破GPU计算瓶颈。一、GlobalMemory的致命瓶颈1.1显存访问代价分析以矩阵乘法$C=A\timesB$为例,计算每个$C_{ij}$需访问A的一行和B的一列:GlobalMemory延迟:约400-800周期计算指令延迟:仅20
- 【AI大模型】14、Transformer架构深度解析:从并行计算到千亿参数模型的扩展密码
无心水
AI大模型人工智能transformer架构AI大模型Transformer模型扩展特征工程自动化特征工程
一、Transformer的基因密码:并行化架构的革命性突破(一)序列计算的历史性突破在Transformer诞生之前,RNN/LSTM等序列模型受困于串行计算的天然缺陷:时间复杂度瓶颈:处理长度为N的序列需O(N)时间,且无法并行,导致训练速度随序列长度呈线性下降。例如,LSTM处理512长度文本需512次递归计算,而Transformer仅需一次矩阵乘法。长距离依赖困境:通过隐藏状态传递信息的
- 算法导论第四章:分治策略的艺术与科学
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化
算法导论第四章:分治策略的艺术与科学本文是《算法导论》精讲专栏第四章,通过问题分解可视化、递归树分析和数学证明,结合完整C语言实现,深入解析分治策略的精髓。包含最大子数组、矩阵乘法、最近点对等经典问题的完整实现与优化技巧。1.分治策略:化繁为简的智慧1.1分治法核心思想原问题分解子问题1子问题2子问题n解决合并最终解分治三步曲:分解:将问题划分为规模更小的子问题解决:递归解决子问题(基线条件直接求
- 机器学习四剑客:Numpy、Pandas、PIL、Matplotlib 完全指南
摘取一颗天上星️
机器学习numpypandas
在机器学习领域,这四个Python库构成了数据处理和可视化的核心工具链。它们各司其职又紧密协作,形成了完整的数据处理流水线:1.Numpy:科学计算基石核心功能:多维数组操作与数值计算importnumpyasnp#创建数组arr=np.array([[1,2,3],[4,5,6]])#数学运算sines=np.sin(arr)#每个元素求正弦
[email protected]#矩阵乘法#高级索引s
- 拉力测试cuda pytorch 把 4070显卡拉满
MYH516
pytorch人工智能python
importtorchimporttimedefstress_test_gpu(matrix_size=16384,duration=300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size:矩阵维度大小,增大可提高计算复杂度duration:测试持续时间(秒)"""#检查CUDA是否可用ifnottorch.cuda.is_available():
- 矩阵乘法--Python
bj3281
矩阵pythonjava
矩阵乘法一、问题引入二、解题步骤1.思维导图2.解题步骤三、代码实现四、个人小结一、问题引入输入格式:第一行为n,m,k,表示A矩阵是n行m列,B矩阵是m行k列,n,m,k均小于20然后先后输入A和B两个矩阵,A矩阵n行m列,B矩阵m行k列,矩阵中每个元素的绝对值不会大于5000。输出格式:输出矩阵C,一共n行,每行k个整数,整数之间以一个空格分开。输入样例:在这里给出一组输入。例如:323111
- TPU结构总结
枫溪夜影
人工智能
TPU只完成推理过程,训练过程在GPU上完成。TPU可以像GPU一样通过PCIe总线接口挂载到现有的服务器上。设计目标是为了在TPU上完成所有的推理模型,从而减少和主机CPU的交互,进而满足2015年及今后的神经网络需求。下图是TPU的整体结构框图。主机通过PCIeGen3x16的总线发送TPU的指令到其中的指令buffer内,内部模块之间通过典型的256位宽通路连接。右上角的矩阵乘法单元是TPU
- MIT线性代数笔记03-矩阵乘法和逆矩阵
loneux
线性代数矩阵机器学习
LinearAlgebra-Lecture03矩阵乘法和逆矩阵GilbertStrang矩阵乘法对于矩阵乘法AB=C\bold{AB=C}AB=C主要有5种方法可用于计算:【前提条件】:A,B\bold{A},\bold{B}A,B两个矩阵行列要匹配,A\bold{A}A的列数要等于B\bold{B}B的行数。[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn][b11b12⋯
- 线性代数学习笔记3-2:矩阵乘法的理解
Insomnia_X
线性代数学习笔记线性代数矩阵学习
矩阵向量乘法计算矩阵乘法,有多种理解方式矩阵与向量的乘法,可以理解为矩阵各个列向量的线性组合[abcd][xy]=[ax+bycx+dy]=x[ac]+y[bd]\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}ax+by\\cx+dy\end{bmatrix}=x\begin{b
- 【PyTorch】CUDA基础知识
沐兮Krystal
NLPpytorch深度学习python
为了追求更快的速度,机器学习研究人员开始利用一些计算机中的特殊硬件。这些硬件原本是用来提升图形处理性能的,叫做显卡。NVIDIACUDA显卡中包含一个GPU,它能够以高度并行化的方式实现矩阵乘法。在很长一段时间,英伟达(NVIDIA)的GPU市场份额一直保持领先。他们有一套成熟的软件工具,可以充分利用硬件加速。这套软件框架就是CUDA。MVIDIA的竞争对手是AMD。在Python中使用CUDA创
- GPU深度学习性能的三驾马车:Tensor Core、内存带宽与内存层次结构
m0_70960708
笔记深度学习人工智能
这篇文章可以帮助我们了解GPU对深度学习性能的多个影响因素,从而帮助我们评估、选用GPU。本文将按照GPU各组件的重要程度顺序来进行介绍。TensorCore(张量计算核心)是最重要的因素,其次是GPU的内存带宽和缓存层次结构,最后是GPU的FLOPS。目录01TensorCore(张量计算核心)1.1在没有张量计算核心的情况下进行矩阵乘法运算1.2使用张量计算核心进行矩阵乘法运算1.3使用张量计
- 爆肝优化!FlashAttention-2性能飙升实战:从原理解析到PyTorch 2.2深度优化(附代码与Benchmark)
游戏人生的NPC
PyTorch2.2深度学习进阶pytorch人工智能python
一、引言:Transformer时代的注意力性能革命1.1传统注意力机制的性能瓶颈在大模型训练中,标准Transformer注意力面临三大痛点:内存爆炸:序列长度L=4096时,注意力内存占用达O(L²),A100显存仅能支持批量大小16计算低效:矩阵乘法占比超70%,GPU显存带宽利用率不足30%扩展性差:长序列场景下训练速度呈指数级下降,某千亿模型训练耗时超100天1.2FlashAttent
- 优化异构计算平台:hStreams框架的深度解析
你好像一条狗啊
异构计算hStreams框架流并发矩阵乘法性能优化
优化异构计算平台:hStreams框架的深度解析背景简介在异构计算领域,如何合理地分配和管理计算资源以优化性能是一个关键问题。本章节通过介绍hStreams框架,深入探讨了在异构计算平台中如何通过控制流并发和资源分配来提升矩阵乘法等计算任务的效率。异构计算与流并发异构计算通常涉及多种类型的处理器和加速器,如CPU和协处理器。通过合理配置这些资源,可以在不同的计算域中实现更高的并发性。在hStrea
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- PyTorch 中mm和bmm函数的使用详解
点云SLAM
PyTorch深度学习pytorch人工智能python矩阵乘法3D深度学习深度学习机器学习
torch.mm是PyTorch中用于二维矩阵乘法(matrix-matrixmultiplication)的函数,等价于数学中的A×B矩阵乘积。一、函数定义torch.mm(input,mat2)→Tensor执行的是两个2DTensor(矩阵)的标准矩阵乘法。input:第一个二维张量,形状为(n×m)mat2:第二个二维张量,形状为(m×p)返回:形状为(n×p)的张量二、使用条件和注意事项
- 学习大模型路线图:从菜鸟到造物主的通关秘籍
天学林总
DeepSeek学AI人工智能
大家好!今天我们要解锁一个神秘代码——大模型AI自学路线图。这不是枯燥的课程表,而是通往“数字造物主”的藏宝图!从零基础到训出你的第一个AI,只需五步,全程高能,即刻出发!第一关:筑基期——数学与代码的“扎马步”目标:用30天打造AI思维的基础骨骼核心装备:-数学三件套:-线性代数:矩阵是AI的乐高积木(重点:矩阵乘法、特征值)-概率统计:让AI学会“赌概率”(贝叶斯定理、正态分布)-微积分:反向
- AI要掌握的知识
杰克逊的日记
人工智能AI技术
AI(人工智能)是一个跨学科的复杂领域,其知识体系涵盖理论基础、技术工具和实践应用等多个层面。以下从核心知识模块、技术工具、实践方向等角度,详细梳理AI从业者需要掌握的知识体系:一、数学基础:AI的理论基石1.线性代数核心概念:向量、矩阵、行列式、特征值与特征向量、矩阵分解(如PCA主成分分析的数学基础)。应用场景:数据降维、神经网络中的矩阵运算(如权重矩阵乘法)、图像变换(如旋转、缩放的矩阵表示
- 【动手学深度学习】2.1. 数据操作
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录2.预备知识2.1.数据操作1)入门2)运算符3)广播机制(broadcastingmechanism)4)索引和切片5)节省内存6)转换为其他Python对象7)小结2.预备知识学习深度学习需掌握以下基础:数据处理:涵盖存储、操作与预处理,核心技能为高效管理表格数据(样本为行,属性为列)。线性代数:矩阵运算是处理多维数据的基础,重点理解基本原理与实现,如矩阵乘法与操作。优化与微积分:通过调整
- 【动手学深度学习】2.3. 线性代数
XiaoJ1234567
《动手学深度学习》深度学习线性代数人工智能
目录2.3.线性代数1)标量2)向量3)矩阵4)张量5)张量的基本性质6)降维7)点积8)矩阵-向量积9)矩阵-矩阵乘法10)范数11)小结2.3.线性代数本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应的代码实现来表示它们。.1)标量定义:仅包含一个数值的量称为标量(零维张量),例如温度值。表示:标量变量用普通小写字母表示(如x,y,z),属于实数空间R。操作:标量支持加法、乘
- DeepSeek源码解构:从MoE架构到MLA的工程化实现
程序边界
架构
文章目录**一、代码结构全景:从模型定义到分布式训练****二、MoE架构:动态路由与稀疏激活的工程化实践****1.专家路由机制(带负载均衡)****数学原理:负载均衡损失推导****三、MLA注意力机制:低秩压缩与解耦旋转位置编码****核心代码实现(含数学优化)****数学优化:低秩矩阵乘法的复杂度分析****五、性能优化:混合精度训练与分布式并行****1.FP8混合精度训练****2.Z
- torch.matmul() VS torch.einsum()
YuSun_WK
pytorch深度学习人工智能
torch.matmul():标准的矩阵乘法向量-向量(点积)a=torch.randn(3)#[3]b=torch.randn(3)#[3]c=torch.matmul(a,b)#点积,标量输出矩阵-向量A=torch.randn(3,4)#[3,4]x=torch.randn(4)#[4]y=torch.matmul(A,x)#[3]矩阵-矩阵A=torch.randn(3,4)#[3,4]B
- 谷歌 DeepMind 发布 AlphaEvolve,解决 300 年数学难题,为近 40 个数学问题找到更优解决方案
hyperai
北京时间5月14日深夜,谷歌DeepMind重磅发布了一款名为AlphaEvolve的编程AIAgent,其将大语言模型的强大代码生成能力与自动评估(automatedevaluators)相结合,能够针对数学和现代计算中的一些基础性和复杂问题进行算法的设计与优化。据官方介绍,AlphaEvolve提升了谷歌数据中心、芯片设计以及AI训练流程的效率,还帮助设计了更快的矩阵乘法算法,并找到了一些数学
- strassen算法 DeepMind的AlphaZero最快矩阵乘法的前身
中堂李1027
算法矩阵线性代数
strassen算法DeepMind的AlphaZero最快矩阵乘法的前身矩阵乘法是线性代数中最基础也是最重要的操作之一,广泛应用于科学计算、工程、计算机图形学、机器学习等领域。随着数据规模的不断扩大,如何高效地进行矩阵乘法成为研究的热点。本文将介绍传统的矩阵乘法方法以及一种经典的优化算法——Strassen算法,并探讨它们在4×4矩阵乘法中的应用。目录引言矩阵乘法基础传统矩阵乘法Strassen
- 计算图存储采用矩阵吗,和张量关系
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython矩阵线性代数人工智能机器学习langchain深度学习
计算图存储采用矩阵吗,和张量关系计算图的存储方式与张量的关系一、计算图的存储方式计算图(ComputationalGraph)是一种用于描述数学运算的有向无环图(DAG),其节点代表运算(如加减乘除、矩阵乘法、激活函数等),边代表运算的输入和输出(通常是张量)。计算图的存储并不直接使用矩阵,而是通过节点和边的关系(如邻接表、属性图等结构)记录运算逻辑和数据流动向。核心存储要素:每个节点(运算)记录
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo