详细的图像拼接实例注释,但是觉得这个代码整体比较乱,接下来自己会整理一个更加有序的代码。
代码和数据可见
完整的代码和数据请见:代码数据链接
#include
#include
#include
#include "opencv2/opencv_modules.hpp"
#include
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/stitching/detail/autocalib.hpp"
#include "opencv2/stitching/detail/blenders.hpp"
#include "opencv2/stitching/detail/timelapsers.hpp"
#include "opencv2/stitching/detail/camera.hpp"
#include "opencv2/stitching/detail/exposure_compensate.hpp"
#include "opencv2/stitching/detail/matchers.hpp"
#include "opencv2/stitching/detail/motion_estimators.hpp"
#include "opencv2/stitching/detail/seam_finders.hpp"
#include "opencv2/stitching/detail/warpers.hpp"
#include "opencv2/stitching/warpers.hpp"
#include
#define ENABLE_LOG 1
#define LOG(msg) std::cout << msg
#define LOGLN(msg) std::cout << msg << std::endl
using namespace std;
using namespace cv;
using namespace cv::detail;
static void printUsage()
{
cout <<
"Rotation model images stitcher.\n\n"
"stitching_detailed img1 img2 [...imgN] [flags]\n\n"
"Flags:\n"
" --preview\n"
" Run stitching in the preview mode. Works faster than usual mode,\n"
" but output image will have lower resolution.\n"
" --try_cuda (yes|no)\n"
" Try to use CUDA. The default value is 'no'. All default values\n"
" are for CPU mode.\n"
"\nMotion Estimation Flags:\n"
" --work_megapix \n"
" Resolution for image registration step. The default is 0.6 Mpx.\n"
" --features (surf|orb)\n"
" Type of features used for images matching. The default is surf.\n"
" --matcher (homography|affine)\n"
" Matcher used for pairwise image matching.\n"
" --estimator (homography|affine)\n"
" Type of estimator used for transformation estimation.\n"
" --match_conf \n"
" Confidence for feature matching step. The default is 0.65 for surf and 0.3 for orb.\n"
" --conf_thresh \n"
" Threshold for two images are from the same panorama confidence.\n"
" The default is 1.0.\n"
" --ba (no|reproj|ray|affine)\n"
" Bundle adjustment cost function. The default is ray.\n"
" --ba_refine_mask (mask)\n"
" Set refinement mask for bundle adjustment. It looks like 'x_xxx',\n"
" where 'x' means refine respective parameter and '_' means don't\n"
" refine one, and has the following format:\n"
" . The default mask is 'xxxxx'. If bundle\n"
" adjustment doesn't support estimation of selected parameter then\n"
" the respective flag is ignored.\n"
" --wave_correct (no|horiz|vert)\n"
" Perform wave effect correction. The default is 'horiz'.\n"
" --save_graph \n"
" Save matches graph represented in DOT language to file.\n"
" Labels description: Nm is number of matches, Ni is number of inliers,\n"
" C is confidence.\n"
"\nCompositing Flags:\n"
" --warp (affine|plane|cylindrical|spherical|fisheye|stereographic|compressedPlaneA2B1|compressedPlaneA1.5B1|compressedPlanePortraitA2B1|compressedPlanePortraitA1.5B1|paniniA2B1|paniniA1.5B1|paniniPortraitA2B1|paniniPortraitA1.5B1|mercator|transverseMercator)\n"
" Warp surface type. The default is 'spherical'.\n"
" --seam_megapix \n"
" Resolution for seam estimation step. The default is 0.1 Mpx.\n"
" --seam (no|voronoi|gc_color|gc_colorgrad)\n"
" Seam estimation method. The default is 'gc_color'.\n"
" --compose_megapix \n"
" Resolution for compositing step. Use -1 for original resolution.\n"
" The default is -1.\n"
" --expos_comp (no|gain|gain_blocks)\n"
" Exposure compensation method. The default is 'gain_blocks'.\n"
" --blend (no|feather|multiband)\n"
" Blending method. The default is 'multiband'.\n"
" --blend_strength \n"
" Blending strength from [0,100] range. The default is 5.\n"
" --output \n"
" The default is 'result.jpg'.\n"
" --timelapse (as_is|crop) \n"
" Output warped images separately as frames of a time lapse movie, with 'fixed_' prepended to input file names.\n"
" --rangewidth \n"
" uses range_width to limit number of images to match with.\n";
}
// Default command line args
vector img_names;
bool preview = false; // 使用preview将会加快运算速度,但同时降低输出图像分辨率
bool try_cuda = false; // 是否使用CUDA加速
double work_megapix = 0.6; //图像匹配步骤的分辨率????
double seam_megapix = 0.1; // 拼缝图像分辨率???
double compose_megapix = -1; //曝光补偿时候分辨率 -1表示使用原始分辨率
float conf_thresh = 1.f; //两幅图来自同一个全景图的置信度
string features_type = "surf"; //特征点选取 SURF或者ORB
string matcher_type = "homography"; //匹配方法 affine或者homography(射影变换)
string estimator_type = "homography"; //预测参数值方法 affine或者homography(射影变换)
string ba_cost_func = "ray"; //光束平差法损失函数 (no|reproj|ray|affine)
string ba_refine_mask = "xxxxx"; //当使用ray作为光束平差法损失函数时,需要初始化setRefinementMask(表示需要精确化的相机内参数矩阵K的掩码矩阵)
bool do_wave_correct = true; //波形矫正 (no|horiz|vert),默认为水平方向
WaveCorrectKind wave_correct = detail::WAVE_CORRECT_HORIZ;
bool save_graph = true; //存储匹配对文件名 label中Nm为匹配数量,Ni为内点数,C为置信度
std::string save_graph_to;
string warp_type = "spherical";// warp (affine|plane|cylindrical|spherical|fisheye|stereographic|等等
int expos_comp_type = ExposureCompensator::GAIN_BLOCKS;//增益补偿(no|gain|gain_blocks)
float match_conf = 0.3f; //匹配点对的置信度
string seam_find_type = "gc_color";
int blend_type = Blender::MULTI_BAND;//图像融合方法 blend (no|feather|multiband)
int timelapse_type = Timelapser::AS_IS;
float blend_strength = 5; // 这里好像是跟融合 下采样之类的数量有关
string result_name = "result.jpg";
bool timelapse = false; // timelapse (as_is|crop)
int range_width = -1; // 限制图像匹配的数量
static int parseCmdArgs(int argc, char** argv)
{
if (argc == 1)
{
printUsage();
return -1;
}
for (int i = 1; i < argc; ++i)
{
if (string(argv[i]) == "--help" || string(argv[i]) == "/?")
{
printUsage();
return -1;
}
else if (string(argv[i]) == "--preview")
{
preview = true;
}
else if (string(argv[i]) == "--try_cuda")
{
if (string(argv[i + 1]) == "no")
try_cuda = false;
else if (string(argv[i + 1]) == "yes")
try_cuda = true;
else
{
cout << "Bad --try_cuda flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--work_megapix")
{
work_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--seam_megapix")
{
seam_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--compose_megapix")
{
compose_megapix = atof(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--result")
{
result_name = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--features")
{
features_type = argv[i + 1];
if (features_type == "orb")
match_conf = 0.3f;
i++;
}
else if (string(argv[i]) == "--matcher")
{
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
matcher_type = argv[i + 1];
else
{
cout << "Bad --matcher flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--estimator")
{
if (string(argv[i + 1]) == "homography" || string(argv[i + 1]) == "affine")
estimator_type = argv[i + 1];
else
{
cout << "Bad --estimator flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--match_conf")
{
match_conf = static_cast(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--conf_thresh")
{
conf_thresh = static_cast(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--ba")
{
ba_cost_func = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--ba_refine_mask")
{
ba_refine_mask = argv[i + 1];
if (ba_refine_mask.size() != 5)
{
cout << "Incorrect refinement mask length.\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--wave_correct")
{
if (string(argv[i + 1]) == "no")
do_wave_correct = false;
else if (string(argv[i + 1]) == "horiz")
{
do_wave_correct = true;
wave_correct = detail::WAVE_CORRECT_HORIZ;
}
else if (string(argv[i + 1]) == "vert")
{
do_wave_correct = true;
wave_correct = detail::WAVE_CORRECT_VERT;
}
else
{
cout << "Bad --wave_correct flag value\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--save_graph")
{
save_graph = true;
save_graph_to = argv[i + 1];
i++;
}
else if (string(argv[i]) == "--warp")
{
warp_type = string(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--expos_comp")
{
if (string(argv[i + 1]) == "no")
expos_comp_type = ExposureCompensator::NO;
else if (string(argv[i + 1]) == "gain")
expos_comp_type = ExposureCompensator::GAIN;
else if (string(argv[i + 1]) == "gain_blocks")
expos_comp_type = ExposureCompensator::GAIN_BLOCKS;
else
{
cout << "Bad exposure compensation method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--seam")
{
if (string(argv[i + 1]) == "no" ||
string(argv[i + 1]) == "voronoi" ||
string(argv[i + 1]) == "gc_color" ||
string(argv[i + 1]) == "gc_colorgrad" ||
string(argv[i + 1]) == "dp_color" ||
string(argv[i + 1]) == "dp_colorgrad")
seam_find_type = argv[i + 1];
else
{
cout << "Bad seam finding method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--blend")
{
if (string(argv[i + 1]) == "no")
blend_type = Blender::NO;
else if (string(argv[i + 1]) == "feather")
blend_type = Blender::FEATHER;
else if (string(argv[i + 1]) == "multiband")
blend_type = Blender::MULTI_BAND;
else
{
cout << "Bad blending method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--timelapse")
{
timelapse = true;
if (string(argv[i + 1]) == "as_is")
timelapse_type = Timelapser::AS_IS;
else if (string(argv[i + 1]) == "crop")
timelapse_type = Timelapser::CROP;
else
{
cout << "Bad timelapse method\n";
return -1;
}
i++;
}
else if (string(argv[i]) == "--rangewidth")
{
range_width = atoi(argv[i + 1]);
i++;
}
else if (string(argv[i]) == "--blend_strength")
{
blend_strength = static_cast(atof(argv[i + 1]));
i++;
}
else if (string(argv[i]) == "--output")
{
result_name = argv[i + 1];
i++;
}
else
img_names.push_back(argv[i]);
}
if (preview)
{
compose_megapix = 0.6;
}
return 0;
}
int main(int argc, char* argv[])
{
#if ENABLE_LOG
int64 app_start_time = getTickCount(); // 统计时间
#endif
#if 0
cv::setBreakOnError(true);
#endif
int retval = parseCmdArgs(argc, argv);
if (retval)
return retval;
// Check if have enough images
int num_images = static_cast(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images"); // LOGIN 和 LOG都使用define语句定义过了 就是一个cout
return -1;
}
double work_scale = 1, seam_scale = 1, compose_scale = 1;
bool is_work_scale_set = false, is_seam_scale_set = false, is_compose_scale_set = false;
LOGLN("Finding features...");
#if ENABLE_LOG
int64 t = getTickCount();
#endif
// 第一步 寻找特征点 surf 或者 orb特征
cv::initModule_nonfree();
Ptr finder; //Ptr是opencv中智能指针
if (features_type == "surf")
{
#ifdef HAVE_OPENCV_XFEATURES2D
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
finder = makePtr();
else
#endif
finder = makePtr();
}
else if (features_type == "orb")
{
finder = makePtr();
}
else
{
cout << "Unknown 2D features type: '" << features_type << "'.\n";
return -1;
}
Mat full_img, img;
vector features(num_images);
vector images(num_images);
vector full_img_sizes(num_images); //存储每一张图像的大小
double seam_work_aspect = 1;
for (int i = 0; i < num_images; ++i)
{
full_img = imread(img_names[i]);
full_img_sizes[i] = full_img.size();
if (full_img.empty())
{
LOGLN("Can't open image " << img_names[i]);
return -1;
}
if (work_megapix < 0)
{
img = full_img;
work_scale = 1;
is_work_scale_set = true;
}
else
{
if (!is_work_scale_set)
{
work_scale = min(1.0, sqrt(work_megapix * 1e6 / full_img.size().area()));
is_work_scale_set = true;
}
resize(full_img, img, Size(), work_scale, work_scale, INTER_LINEAR_EXACT);//work_scale代表长宽方向缩放的尺度,则配准时图像分辨率为0.6Mpix
}
if (!is_seam_scale_set)
{
seam_scale = min(1.0, sqrt(seam_megapix * 1e6 / full_img.size().area()));
seam_work_aspect = seam_scale / work_scale;//类似的定义了拼缝的分辨率
is_seam_scale_set = true;
}
(*finder)(img, features[i]);
features[i].img_idx = i;//讲匹配结果存储在features
vector img_feature(num_images);//定义一个图像存储特征
LOGLN("Features in image #" << i+1 << ": " << features[i].keypoints.size());
// drawKeypoints(img, featurs[i],img_feature[i], Scalar::all(-1));//绘制特征点
// namedWindow("feature");
// imshow("feature",img_feature[i]);
// waitKey(500);
resize(full_img, img, Size(), seam_scale, seam_scale, INTER_LINEAR_EXACT);//这里已经修改为了拼缝的分辨率
images[i] = img.clone();
}
//释放内存
finder->collectGarbage();
full_img.release();
img.release();
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
LOG("Pairwise matching");
#if ENABLE_LOG
t = getTickCount();
#endif
vector pairwise_matches;
Ptr matcher;//智能指针
if (matcher_type == "affine")
matcher = makePtr(false, try_cuda, match_conf);
//使用2NN方法进行特征点匹配,并且当描述子的比值大于阈值认为是正确匹配
//lab/lcd<1-match_conf则认为ab是正确匹配,在此之前如果寻找到匹配点数量小于2,则退出
else if (range_width==-1)// 每幅图允许匹配的数量 可能是考虑到了投影变换需要计算参数更多
matcher = makePtr(try_cuda, match_conf);// makePtr 相当于Ptr
else
matcher = makePtr(range_width, try_cuda, match_conf);
(*matcher)(features, pairwise_matches);
matcher->collectGarbage();
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
// Check if we should save matches graph,是否存储匹配对
if (save_graph)
{
LOGLN("Saving matches graph...");
ofstream f(save_graph_to.c_str());
f << matchesGraphAsString(img_names, pairwise_matches, conf_thresh);
}
// Leave only images we are sure are from the same panorama
// 这里是否对features和pairwist_matches进行了更新????
// 这里给出了源码 可以看出更新了feature和pairwise_matches https://www.cnblogs.com/jsxyhelu/p/6810964.html
vector indices = leaveBiggestComponent(features, pairwise_matches, conf_thresh);
//c = ni/(8+3N) 如果这个数大于3,则认为是同一幅图,这一步骤已经集成在函数内部,如果低于阈值,则认为是不能拼接,在这里机构建最大可拼接子集
vector img_subset;
vector img_names_subset;
vector full_img_sizes_subset;// 更新图像集合为全部可拼接图像
for (size_t i = 0; i < indices.size(); ++i)
{
img_names_subset.push_back(img_names[indices[i]]);
img_subset.push_back(images[indices[i]]);
full_img_sizes_subset.push_back(full_img_sizes[indices[i]]);
}
images = img_subset;
img_names = img_names_subset;
full_img_sizes = full_img_sizes_subset;
// Check if we still have enough images
num_images = static_cast(img_names.size());
if (num_images < 2)
{
LOGLN("Need more images");
return -1;
}
Ptr estimator;
if (estimator_type == "affine")
estimator = makePtr();
else
estimator = makePtr();
vector cameras;//这里的旋转矩阵包括了相机的内参以及旋转和平移向量,这里只是初步预测,后面使用光束平差法进行了细化
if (!(*estimator)(features, pairwise_matches, cameras))
{
cout << "Homography estimation failed.\n";
return -1;
}
for (size_t i = 0; i < cameras.size(); ++i)
{
Mat R;
cameras[i].R.convertTo(R, CV_32F);// 转换旋转矩阵的数据类型
cameras[i].R = R;
LOGLN("Initial camera intrinsics #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
}
Ptr adjuster;
if (ba_cost_func == "reproj") adjuster = makePtr();
else if (ba_cost_func == "ray") adjuster = makePtr();
else if (ba_cost_func == "affine") adjuster = makePtr();
else if (ba_cost_func == "no") adjuster = makePtr();
else
{
cout << "Unknown bundle adjustment cost function: '" << ba_cost_func << "'.\n";
return -1;
}
//这个我觉得没什么用 前面已经通过leaveBiggestComponent求出了最大子集
adjuster->setConfThresh(conf_thresh);
//当使用ray作为光束平差法损失函数时,需要初始化setRefinementMask(表示需要精确化的相机内参数矩阵K的掩码矩阵)
Mat_ refine_mask = Mat::zeros(3, 3, CV_8U);
if (ba_refine_mask[0] == 'x') refine_mask(0,0) = 1;
if (ba_refine_mask[1] == 'x') refine_mask(0,1) = 1;
if (ba_refine_mask[2] == 'x') refine_mask(0,2) = 1;
if (ba_refine_mask[3] == 'x') refine_mask(1,1) = 1;
if (ba_refine_mask[4] == 'x') refine_mask(1,2) = 1;
adjuster->setRefinementMask(refine_mask);
if (!(*adjuster)(features, pairwise_matches, cameras))
{
cout << "Camera parameters adjusting failed.\n";
return -1;
}
// Find median focal length, 这里的focal取得是中值,也可以取平均值
vector focals;
for (size_t i = 0; i < cameras.size(); ++i)
{
LOGLN("Camera #" << indices[i]+1 << ":\nK:\n" << cameras[i].K() << "\nR:\n" << cameras[i].R);
focals.push_back(cameras[i].focal);
}
sort(focals.begin(), focals.end());
float warped_image_scale;
if (focals.size() % 2 == 1)
warped_image_scale = static_cast(focals[focals.size() / 2]);
else
warped_image_scale = static_cast(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
// 类似论文中的up vector
if (do_wave_correct)
{
vector rmats;
for (size_t i = 0; i < cameras.size(); ++i)
rmats.push_back(cameras[i].R.clone());
waveCorrect(rmats, wave_correct);
for (size_t i = 0; i < cameras.size(); ++i)
cameras[i].R = rmats[i];
}
// 由于在拍摄时候,图像位于不同的平面,如果直接拼接的话,会破坏是视觉场的一致性,所以要将其映射到平面上
LOGLN("Warping images (auxiliary)... ");
#if ENABLE_LOG
t = getTickCount();
#endif
vector corners(num_images); // 映射之后图像左上角坐标
vector masks_warped(num_images); // 映射图像后的掩码
vector images_warped(num_images); // 映射变换后图像
vector sizes(num_images); // 映射后图像尺寸
vector masks(num_images); // 原图尺寸
// Preapre images masks
for (int i = 0; i < num_images; ++i)
{
masks[i].create(images[i].size(), CV_8U);
masks[i].setTo(Scalar::all(255));//定义原图中所有部分均使用
}
// Warp images and their masks
// 将最终的图像进行映射变换,最终是在平面 椭圆还是其他
Ptr warper_creator;
#ifdef HAVE_OPENCV_CUDAWARPING
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
{
if (warp_type == "plane")
warper_creator = makePtr();
else if (warp_type == "cylindrical")
warper_creator = makePtr();
else if (warp_type == "spherical")
warper_creator = makePtr();
}
else
#endif
{
if (warp_type == "plane")
warper_creator = makePtr();
else if (warp_type == "affine")
warper_creator = makePtr();
else if (warp_type == "cylindrical")
warper_creator = makePtr();
else if (warp_type == "spherical")
warper_creator = makePtr();
else if (warp_type == "fisheye")
warper_creator = makePtr();
else if (warp_type == "stereographic")
warper_creator = makePtr();
else if (warp_type == "compressedPlaneA2B1")
warper_creator = makePtr(2.0f, 1.0f);
else if (warp_type == "compressedPlaneA1.5B1")
warper_creator = makePtr(1.5f, 1.0f);
else if (warp_type == "compressedPlanePortraitA2B1")
warper_creator = makePtr(2.0f, 1.0f);
else if (warp_type == "compressedPlanePortraitA1.5B1")
warper_creator = makePtr(1.5f, 1.0f);
else if (warp_type == "paniniA2B1")
warper_creator = makePtr(2.0f, 1.0f);
else if (warp_type == "paniniA1.5B1")
warper_creator = makePtr(1.5f, 1.0f);
else if (warp_type == "paniniPortraitA2B1")
warper_creator = makePtr(2.0f, 1.0f);
else if (warp_type == "paniniPortraitA1.5B1")
warper_creator = makePtr(1.5f, 1.0f);
else if (warp_type == "mercator")
warper_creator = makePtr();
else if (warp_type == "transverseMercator")
warper_creator = makePtr();
}
if (!warper_creator)
{
cout << "Can't create the following warper '" << warp_type << "'\n";
return 1;
}
// 参数数量视映射情况而定,设置映射的尺寸为焦距,这里是因为定义了拼缝,所有乘以了拼缝;
Ptr warper = warper_creator->create(static_cast(warped_image_scale * seam_work_aspect));
for (int i = 0; i < num_images; ++i)
{
Mat_ K;// K为相机内参
cameras[i].K().convertTo(K, CV_32F);
float swa = (float)seam_work_aspect;
K(0,0) *= swa; K(0,2) *= swa;
K(1,1) *= swa; K(1,2) *= swa;
// 这里用到了相机的内参和外参,得到了变换后图像左上角坐标和变换后图像
corners[i] = warper->warp(images[i], K, cameras[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
sizes[i] = images_warped[i].size();// 映射后图像尺寸
// 得到了映射后的图像掩码
warper->warp(masks[i], K, cameras[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
}
vector images_warped_f(num_images);
for (int i = 0; i < num_images; ++i)
images_warped[i].convertTo(images_warped_f[i], CV_32F);
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
Ptr compensator = ExposureCompensator::createDefault(expos_comp_type);
compensator->feed(corners, images_warped, masks_warped);
// 定义拼缝
Ptr seam_finder;
if (seam_find_type == "no")
seam_finder = makePtr();
else if (seam_find_type == "voronoi")
seam_finder = makePtr();
else if (seam_find_type == "gc_color")
{
#ifdef HAVE_OPENCV_CUDALEGACY
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr(GraphCutSeamFinderBase::COST_COLOR);
else
#endif
seam_finder = makePtr(GraphCutSeamFinderBase::COST_COLOR);
}
else if (seam_find_type == "gc_colorgrad")
{
#ifdef HAVE_OPENCV_CUDALEGACY
if (try_cuda && cuda::getCudaEnabledDeviceCount() > 0)
seam_finder = makePtr(GraphCutSeamFinderBase::COST_COLOR_GRAD);
else
#endif
seam_finder = makePtr(GraphCutSeamFinderBase::COST_COLOR_GRAD);
}
else if (seam_find_type == "dp_color")
seam_finder = makePtr(DpSeamFinder::COLOR);
else if (seam_find_type == "dp_colorgrad")
seam_finder = makePtr(DpSeamFinder::COLOR_GRAD);
if (!seam_finder)
{
cout << "Can't create the following seam finder '" << seam_find_type << "'\n";
return 1;
}
// 得到接缝线的掩码图像
seam_finder->find(images_warped_f, corners, masks_warped);
// Release unused memory
images.clear();
images_warped.clear();
images_warped_f.clear();
masks.clear();
LOGLN("Compositing...");
#if ENABLE_LOG
t = getTickCount();
#endif
// 进行曝光补偿,这里由于曝光时尺寸发生了变换,因此这里需要对映射后的分辨率进行改变
Mat img_warped, img_warped_s;
Mat dilated_mask, seam_mask, mask, mask_warped;
Ptr blender;
Ptr timelapser;
//double compose_seam_aspect = 1;
double compose_work_aspect = 1;
for (int img_idx = 0; img_idx < num_images; ++img_idx)
{
LOGLN("Compositing image #" << indices[img_idx]+1);
// Read image and resize it if necessary
full_img = imread(img_names[img_idx]);
if (!is_compose_scale_set)
{
if (compose_megapix > 0)
compose_scale = min(1.0, sqrt(compose_megapix * 1e6 / full_img.size().area()));
is_compose_scale_set = true;
// Compute relative scales
//compose_seam_aspect = compose_scale / seam_scale;
compose_work_aspect = compose_scale / work_scale;
// Update warped image scale,warped_image_scale是焦距尺寸
warped_image_scale *= static_cast(compose_work_aspect);
warper = warper_creator->create(warped_image_scale);
// Update corners and sizes
for (int i = 0; i < num_images; ++i)
{
// Update intrinsics
cameras[i].focal *= compose_work_aspect;
cameras[i].ppx *= compose_work_aspect; //Principal point X
cameras[i].ppy *= compose_work_aspect;
// Update corner and size
Size sz = full_img_sizes[i];
if (std::abs(compose_scale - 1) > 1e-1)
{
sz.width = cvRound(full_img_sizes[i].width * compose_scale);
sz.height = cvRound(full_img_sizes[i].height * compose_scale);
}
Mat K;
cameras[i].K().convertTo(K, CV_32F);
Rect roi = warper->warpRoi(sz, K, cameras[i].R);// Projected image minimum bounding box
corners[i] = roi.tl();//左上角坐标
sizes[i] = roi.size();//尺寸
}
}
if (abs(compose_scale - 1) > 1e-1)
resize(full_img, img, Size(), compose_scale, compose_scale, INTER_LINEAR_EXACT);
else
img = full_img;
full_img.release();
Size img_size = img.size();
Mat K;
cameras[img_idx].K().convertTo(K, CV_32F);
// 这里为什么要重新进行映射 单纯是因为尺寸原因???
warper->warp(img, K, cameras[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
// Warp the current image mask
mask.create(img_size, CV_8U);
mask.setTo(Scalar::all(255));
warper->warp(mask, K, cameras[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
// Compensate exposure
compensator->apply(img_idx, corners[img_idx], img_warped, mask_warped);
img_warped.convertTo(img_warped_s, CV_16S);
img_warped.release();
img.release();
mask.release();
// 这里来说结构元素是什么 Mat()是什么意思?????
//在融合的时候,最重要的是在接缝线两侧进行处理,而上一步在寻找接缝线后得到的掩码的边界就是接缝线处,
// 因此我们还需要在接缝线两侧开辟一块区域用于融合处理,这一处理过程对羽化方法尤为关键
// 应用膨胀算法缩小掩码面积
dilate(masks_warped[img_idx], dilated_mask, Mat());
resize(dilated_mask, seam_mask, mask_warped.size(), 0, 0, INTER_LINEAR_EXACT);
// 映射变换图的掩码和膨胀后的掩码相“与”,从而使扩展的区域仅仅限于接缝线两侧,其他边界处不受影响
mask_warped = seam_mask & mask_warped;
if (!blender && !timelapse)
{
blender = Blender::createDefault(blend_type, try_cuda);
Size dst_sz = resultRoi(corners, sizes).size();
float blend_width = sqrt(static_cast(dst_sz.area())) * blend_strength / 100.f;
if (blend_width < 1.f)
blender = Blender::createDefault(Blender::NO, try_cuda);
else if (blend_type == Blender::MULTI_BAND)
{
MultiBandBlender* mb = dynamic_cast(blender.get());
//设置频段数,即金字塔层数
mb->setNumBands(static_cast(ceil(log(blend_width)/log(2.)) - 1.));
LOGLN("Multi-band blender, number of bands: " << mb->numBands());
}
else if (blend_type == Blender::FEATHER)
{
FeatherBlender* fb = dynamic_cast(blender.get());
fb->setSharpness(1.f/blend_width);// 设置羽化度
LOGLN("Feather blender, sharpness: " << fb->sharpness());
}
blender->prepare(corners, sizes);
}
else if (!timelapser && timelapse)
{
timelapser = Timelapser::createDefault(timelapse_type);
timelapser->initialize(corners, sizes);
}
// Blend the current image
if (timelapse)
{
timelapser->process(img_warped_s, Mat::ones(img_warped_s.size(), CV_8UC1), corners[img_idx]);
String fixedFileName;
size_t pos_s = String(img_names[img_idx]).find_last_of("/\\");
if (pos_s == String::npos)
{
fixedFileName = "fixed_" + img_names[img_idx];
}
else
{
fixedFileName = "fixed_" + String(img_names[img_idx]).substr(pos_s + 1, String(img_names[img_idx]).length() - pos_s);
}
imwrite(fixedFileName, timelapser->getDst());
}
else
{
blender->feed(img_warped_s, mask_warped, corners[img_idx]);
}
}
if (!timelapse)
{
Mat result, result_mask;
blender->blend(result, result_mask);
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
imwrite(result_name, result);
}
LOGLN("Finished, total time: " << ((getTickCount() - app_start_time) / getTickFrequency()) << " sec");
return 0;
}
拼接结果: