使用Spark 2.2.1 + Kudu 1.5.0 操作Kudu大数据系统

使用Spark 2.2.1 + Kudu 1.5.0 操作Kudu大数据系统

  1. Kudu的版本查询:(https://www.cloudera.com/documentation/enterprise/release-notes/topics/cdh_vd_cdh5_maven_repo_513x.html#concept_8ur_obn_yk)
Apache Kudu	org.apache.kudu	interface-annotations	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-client	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-client-tools	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-flume-sink	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-hive	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-mapreduce	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-parent	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-spark-tools	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-spark2-tools_2.11	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-spark2_2.11	1.5.0-cdh5.13.0
 	org.apache.kudu	kudu-spark_2.10	1.5.0-cdh5.13.0

2.Kudu的Maven依赖:

        
        
            org.apache.kudu
            kudu-client-tools
            1.5.0
        

        
        
            org.apache.kudu
            kudu-client
            1.5.0
            test
        
        
            org.apache.kudu
            kudu-spark2_2.11
            1.5.0
        

3,Spark2.2.1连接Kudu 1.5.0 的源码分析:

 sparkSession使用("kudu.master",kuduMaster),("kudu.table",kuduTable)连接Kudu系统:

        Dataset ds =  sparkSession.read().format("org.apache.kudu.spark.kudu").
                schema(schema).option("kudu.master",kuduMaster).option("kudu.table",kuduTable).load();

  /**
   * Loads input in as a `DataFrame`, for data sources that don't require a path (e.g. external
   * key-value stores).
   *
   * @since 1.4.0
   */
  def load(): DataFrame = {
    load(Seq.empty: _*) // force invocation of `load(...varargs...)`
  }
 /**
   * Loads input in as a `DataFrame`, for data sources that support multiple paths.
   * Only works if the source is a HadoopFsRelationProvider.
   *
   * @since 1.6.0
   */
  @scala.annotation.varargs
  def load(paths: String*): DataFrame = {
    if (source.toLowerCase(Locale.ROOT) == DDLUtils.HIVE_PROVIDER) {
      throw new AnalysisException("Hive data source can only be used with tables, you can not " +
        "read files of Hive data source directly.")
    }

    sparkSession.baseRelationToDataFrame(
      DataSource.apply(
        sparkSession,
        paths = paths,
        userSpecifiedSchema = userSpecifiedSchema,
        className = source,
        options = extraOptions.toMap).resolveRelation())
  }
/**
   * Create a resolved [[BaseRelation]] that can be used to read data from or write data into this
   * [[DataSource]]
   *
   * @param checkFilesExist Whether to confirm that the files exist when generating the
   *                        non-streaming file based datasource. StructuredStreaming jobs already
   *                        list file existence, and when generating incremental jobs, the batch
   *                        is considered as a non-streaming file based data source. Since we know
   *                        that files already exist, we don't need to check them again.
   */
  def resolveRelation(checkFilesExist: Boolean = true): BaseRelation = {
    val relation = (providingClass.newInstance(), userSpecifiedSchema) match {
      // TODO: Throw when too much is given.
      case (dataSource: SchemaRelationProvider, Some(schema)) =>
        dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions, schema)
      case (dataSource: RelationProvider, None) =>
        dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions)
      case (_: SchemaRelationProvider, None) =>
        throw new AnalysisException(s"A schema needs to be specified when using $className.")
      case (dataSource: RelationProvider, Some(schema)) =>
        val baseRelation =
          dataSource.createRelation(sparkSession.sqlContext, caseInsensitiveOptions)
        if (baseRelation.schema != schema) {
          throw new AnalysisException(s"$className does not allow user-specified schemas.")
        }
        baseRelation

      // We are reading from the results of a streaming query. Load files from the metadata log
      // instead of listing them using HDFS APIs.
      case (format: FileFormat, _)
          if FileStreamSink.hasMetadata(
            caseInsensitiveOptions.get("path").toSeq ++ paths,
            sparkSession.sessionState.newHadoopConf()) =>
        val basePath = new Path((caseInsensitiveOptions.get("path").toSeq ++ paths).head)
        val fileCatalog = new MetadataLogFileIndex(sparkSession, basePath)
        val dataSchema = userSpecifiedSchema.orElse {
          format.inferSchema(
            sparkSession,
            caseInsensitiveOptions,
            fileCatalog.allFiles())
        }.getOrElse {
          throw new AnalysisException(
            s"Unable to infer schema for $format at ${fileCatalog.allFiles().mkString(",")}. " +
                "It must be specified manually")
        }

        HadoopFsRelation(
          fileCatalog,
          partitionSchema = fileCatalog.partitionSchema,
          dataSchema = dataSchema,
          bucketSpec = None,
          format,
          caseInsensitiveOptions)(sparkSession)

      // This is a non-streaming file based datasource.
      case (format: FileFormat, _) =>
        val allPaths = caseInsensitiveOptions.get("path") ++ paths
        val hadoopConf = sparkSession.sessionState.newHadoopConf()
        val globbedPaths = allPaths.flatMap(
          DataSource.checkAndGlobPathIfNecessary(hadoopConf, _, checkFilesExist)).toArray

        val fileStatusCache = FileStatusCache.getOrCreate(sparkSession)
        val (dataSchema, partitionSchema) = getOrInferFileFormatSchema(format, fileStatusCache)

        val fileCatalog = if (sparkSession.sqlContext.conf.manageFilesourcePartitions &&
            catalogTable.isDefined && catalogTable.get.tracksPartitionsInCatalog) {
          val defaultTableSize = sparkSession.sessionState.conf.defaultSizeInBytes
          new CatalogFileIndex(
            sparkSession,
            catalogTable.get,
            catalogTable.get.stats.map(_.sizeInBytes.toLong).getOrElse(defaultTableSize))
        } else {
          new InMemoryFileIndex(
            sparkSession, globbedPaths, options, Some(partitionSchema), fileStatusCache)
        }

        HadoopFsRelation(
          fileCatalog,
          partitionSchema = partitionSchema,
          dataSchema = dataSchema.asNullable,
          bucketSpec = bucketSpec,
          format,
          caseInsensitiveOptions)(sparkSession)

      case _ =>
        throw new AnalysisException(
          s"$className is not a valid Spark SQL Data Source.")
    }

    relation
  }

调用org.apache.kudu.spark.kudu.DefaultSource.createRelation方法

override def createRelation(sqlContext: SQLContext, parameters: Map[String, String],
                              schema: StructType): BaseRelation = {
    val tableName = parameters.getOrElse(TABLE_KEY,
      throw new IllegalArgumentException(s"Kudu table name must be specified in create options " +
        s"using key '$TABLE_KEY'"))
    val kuduMaster = parameters.getOrElse(KUDU_MASTER, "localhost")
    val operationType = getOperationType(parameters.getOrElse(OPERATION, "upsert"))
    val faultTolerantScanner = Try(parameters.getOrElse(FAULT_TOLERANT_SCANNER, "false").toBoolean)
      .getOrElse(false)

    new KuduRelation(tableName, kuduMaster, faultTolerantScanner, operationType,
      Some(schema))(sqlContext)
  }
/**
  * Implementation of Spark BaseRelation.
  *
  * @param tableName Kudu table that we plan to read from
  * @param masterAddrs Kudu master addresses
  * @param faultTolerantScanner scanner type to be used. Fault tolerant if true,
  *                             otherwise, use non fault tolerant one
  * @param operationType The default operation type to perform when writing to the relation
  * @param userSchema A schema used to select columns for the relation
  * @param sqlContext SparkSQL context
  */
@InterfaceStability.Unstable
class KuduRelation(private val tableName: String,
                   private val masterAddrs: String,
                   private val faultTolerantScanner: Boolean,
                   private val operationType: OperationType,
                   private val userSchema: Option[StructType])(
                   val sqlContext: SQLContext)
  extends BaseRelation
    with PrunedFilteredScan
    with InsertableRelation {

  import KuduRelation._

  private val context: KuduContext = new KuduContext(masterAddrs, sqlContext.sparkContext)
  private val table: KuduTable = context.syncClient.openTable(tableName)
/**
  * KuduContext is a serializable container for Kudu client connections.
  *
  * If a Kudu client connection is needed as part of a Spark application, a
  * [[KuduContext]] should be created in the driver, and shared with executors
  * as a serializable field.
  */
@InterfaceStability.Unstable
class KuduContext(val kuduMaster: String,
                  sc: SparkContext) extends Serializable {
  import kudu.KuduContext._

  @Deprecated()
  def this(kuduMaster: String) {
    this(kuduMaster, new SparkContext())
  }

  @transient lazy val syncClient = {
    val c = KuduConnection.getSyncClient(kuduMaster)
    if (authnCredentials != null) {
      c.importAuthenticationCredentials(authnCredentials)
    }
    c
  }

  @transient lazy val asyncClient = {
    val c = KuduConnection.getAsyncClient(kuduMaster)
    if (authnCredentials != null) {
      c.importAuthenticationCredentials(authnCredentials)
    }
    c
  }

  // Visible for testing.
  private[kudu] val authnCredentials : Array[Byte] = {
    Subject.doAs(getSubject(sc), new PrivilegedAction[Array[Byte]] {
      override def run(): Array[Byte] = syncClient.exportAuthenticationCredentials()
    })
  }

  /**
    * Create an RDD from a Kudu table.
    *
    * @param tableName          table to read from
    * @param columnProjection   list of columns to read. Not specifying this at all
    *                           (i.e. setting to null) or setting to the special
    *                           string '*' means to project all columns
    * @return a new RDD that maps over the given table for the selected columns
    */
  def kuduRDD(sc: SparkContext,
              tableName: String,
              columnProjection: Seq[String] = Nil): RDD[Row] = {
    // TODO: provide an elegant way to pass various options (faultTolerantScan, etc) to KuduRDD
    new KuduRDD(this, 1024*1024*20, columnProjection.toArray, Array(),
                syncClient.openTable(tableName), false, sc)
  }

  /**
    * Check if kudu table already exists
    *
    * @param tableName name of table to check
    * @return true if table exists, false if table does not exist
    */
  def tableExists(tableName: String): Boolean = syncClient.tableExists(tableName)

  /**
    * Delete kudu table
    *
    * @param tableName name of table to delete
    * @return DeleteTableResponse
    */
  def deleteTable(tableName: String): DeleteTableResponse = syncClient.deleteTable(tableName)

  /**
    * Creates a kudu table for the given schema. Partitioning can be specified through options.
    *
    * @param tableName table to create
    * @param schema struct schema of table
    * @param keys primary keys of the table
    * @param options replication and partitioning options for the table
    */
  def createTable(tableName: String,
                  schema: StructType,
                  keys: Seq[String],
                  options: CreateTableOptions): KuduTable = {
    val kuduCols = new util.ArrayList[ColumnSchema]()
    // add the key columns first, in the order specified
    for (key <- keys) {
      val f = schema.fields(schema.fieldIndex(key))
      kuduCols.add(new ColumnSchema.ColumnSchemaBuilder(f.name, kuduType(f.dataType)).key(true).build())
    }
    // now add the non-key columns
    for (f <- schema.fields.filter(field=> !keys.contains(field.name))) {
      kuduCols.add(new ColumnSchema.ColumnSchemaBuilder(f.name, kuduType(f.dataType)).nullable(f.nullable).key(false).build())
    }

    syncClient.createTable(tableName, new Schema(kuduCols), options)
  }

  /** Map Spark SQL type to Kudu type */
  def kuduType(dt: DataType) : Type = dt match {
    case DataTypes.BinaryType => Type.BINARY
    case DataTypes.BooleanType => Type.BOOL
    case DataTypes.StringType => Type.STRING
    case DataTypes.TimestampType => Type.UNIXTIME_MICROS
    case DataTypes.ByteType => Type.INT8
    case DataTypes.ShortType => Type.INT16
    case DataTypes.IntegerType => Type.INT32
    case DataTypes.LongType => Type.INT64
    case DataTypes.FloatType => Type.FLOAT
    case DataTypes.DoubleType => Type.DOUBLE
    case _ => throw new IllegalArgumentException(s"No support for Spark SQL type $dt")
  }

  /**
    * Inserts the rows of a [[DataFrame]] into a Kudu table.
    *
    * @param data the data to insert
    * @param tableName the Kudu table to insert into
    */
  def insertRows(data: DataFrame, tableName: String): Unit = {
    writeRows(data, tableName, Insert)
  }

  /**
    * Inserts the rows of a [[DataFrame]] into a Kudu table, ignoring any new
    * rows that have a primary key conflict with existing rows.
    *
    * @param data the data to insert into Kudu
    * @param tableName the Kudu table to insert into
    */
  def insertIgnoreRows(data: DataFrame, tableName: String): Unit = {
    writeRows(data, tableName, InsertIgnore)
  }

  /**
    * Upserts the rows of a [[DataFrame]] into a Kudu table.
    *
    * @param data the data to upsert into Kudu
    * @param tableName the Kudu table to upsert into
    */
  def upsertRows(data: DataFrame, tableName: String): Unit = {
    writeRows(data, tableName, Upsert)
  }

  /**
    * Updates a Kudu table with the rows of a [[DataFrame]].
    *
    * @param data the data to update into Kudu
    * @param tableName the Kudu table to update
    */
  def updateRows(data: DataFrame, tableName: String): Unit = {
    writeRows(data, tableName, Update)
  }

  /**
    * Deletes the rows of a [[DataFrame]] from a Kudu table.
    *
    * @param data the data to delete from Kudu
    *             note that only the key columns should be specified for deletes
    * @param tableName The Kudu tabe to delete from
    */
  def deleteRows(data: DataFrame, tableName: String): Unit = {
    writeRows(data, tableName, Delete)
  }

  private[kudu] def writeRows(data: DataFrame, tableName: String, operation: OperationType) {
    val schema = data.schema
    data.foreachPartition(iterator => {
      val pendingErrors = writePartitionRows(iterator, schema, tableName, operation)
      val errorCount = pendingErrors.getRowErrors.length
      if (errorCount > 0) {
        val errors = pendingErrors.getRowErrors.take(5).map(_.getErrorStatus).mkString
        throw new RuntimeException(
          s"failed to write $errorCount rows from DataFrame to Kudu; sample errors: $errors")
      }
    })
  }

  private def writePartitionRows(rows: Iterator[Row],
                                 schema: StructType,
                                 tableName: String,
                                 operationType: OperationType): RowErrorsAndOverflowStatus = {
    val table: KuduTable = syncClient.openTable(tableName)
    val indices: Array[(Int, Int)] = schema.fields.zipWithIndex.map({ case (field, sparkIdx) =>
      sparkIdx -> table.getSchema.getColumnIndex(field.name)
    })
    val session: KuduSession = syncClient.newSession
    session.setFlushMode(FlushMode.AUTO_FLUSH_BACKGROUND)
    session.setIgnoreAllDuplicateRows(operationType.ignoreDuplicateRowErrors)
    try {
      for (row <- rows) {
        val operation = operationType.operation(table)
        for ((sparkIdx, kuduIdx) <- indices) {
          if (row.isNullAt(sparkIdx)) {
            operation.getRow.setNull(kuduIdx)
          } else schema.fields(sparkIdx).dataType match {
            case DataTypes.StringType => operation.getRow.addString(kuduIdx, row.getString(sparkIdx))
            case DataTypes.BinaryType => operation.getRow.addBinary(kuduIdx, row.getAs[Array[Byte]](sparkIdx))
            case DataTypes.BooleanType => operation.getRow.addBoolean(kuduIdx, row.getBoolean(sparkIdx))
            case DataTypes.ByteType => operation.getRow.addByte(kuduIdx, row.getByte(sparkIdx))
            case DataTypes.ShortType => operation.getRow.addShort(kuduIdx, row.getShort(sparkIdx))
            case DataTypes.IntegerType => operation.getRow.addInt(kuduIdx, row.getInt(sparkIdx))
            case DataTypes.LongType => operation.getRow.addLong(kuduIdx, row.getLong(sparkIdx))
            case DataTypes.FloatType => operation.getRow.addFloat(kuduIdx, row.getFloat(sparkIdx))
            case DataTypes.DoubleType => operation.getRow.addDouble(kuduIdx, row.getDouble(sparkIdx))
            case DataTypes.TimestampType => operation.getRow.addLong(kuduIdx, KuduRelation.timestampToMicros(row.getTimestamp(sparkIdx)))
            case t => throw new IllegalArgumentException(s"No support for Spark SQL type $t")
          }
        }
        session.apply(operation)
      }
    } finally {
      session.close()
    }
    session.getPendingErrors
  }
}

private object KuduContext {
  val Log: Logger = LoggerFactory.getLogger(classOf[KuduContext])

  /**
    * Returns a new Kerberos-authenticated [[Subject]] if the Spark context contains
    * principal and keytab options, otherwise returns the currently active subject.
    *
    * The keytab and principal options should be set when deploying a Spark
    * application in cluster mode with Yarn against a secure Kudu cluster. Spark
    * internally will grab HDFS and HBase delegation tokens (see
    * [[org.apache.spark.deploy.SparkSubmit]]), so we do something similar.
    *
    * This method can only be called on the driver, where the SparkContext is
    * available.
    *
    * @return A Kerberos-authenticated subject if the Spark context contains
    *         principal and keytab options, otherwise returns the currently
    *         active subject
    */
  private def getSubject(sc: SparkContext): Subject = {
    val subject = Subject.getSubject(AccessController.getContext)

    val principal = sc.getConf.getOption("spark.yarn.principal").getOrElse(return subject)
    val keytab = sc.getConf.getOption("spark.yarn.keytab").getOrElse(return subject)

    Log.info(s"Logging in as principal $principal with keytab $keytab")

    val conf = new Configuration {
      override def getAppConfigurationEntry(name: String): Array[AppConfigurationEntry] = {
        val options = Map(
          "principal" -> principal,
          "keyTab" -> keytab,
          "useKeyTab" -> "true",
          "useTicketCache" -> "false",
          "doNotPrompt" -> "true",
          "refreshKrb5Config" -> "true"
        )

        Array(new AppConfigurationEntry("com.sun.security.auth.module.Krb5LoginModule",
                                        AppConfigurationEntry.LoginModuleControlFlag.REQUIRED,
                                        options.asJava))
      }
    }

    val loginContext = new LoginContext("kudu-spark", new Subject(), null, conf)
    loginContext.login()
    loginContext.getSubject
  }
}

4.spark shell连接Kudu。

spark-shell   --master yarn --num-executors 2 --executor-cores 2 --executor-memory 4G --jars /Path/kudu-client-1.5.0.jar,/Path/kudu-client-tools-1.5.0.jar,/Path/kudu-spark2_2.11-1.5.0.jar 
Spark context available as 'sc' (master = yarn, app id = application_1520565037255_1081004).
Spark session available as 'spark'.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.2.1
      /_/
         
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_92)
Type in expressions to have them evaluated.
Type :help for more information.

scala>  import org.apache.kudu.spark.kudu._
import org.apache.kudu.spark.kudu._

scala>  import org.apache.kudu.client._
import org.apache.kudu.client._

scala>  import collection.JavaConverters._
import collection.JavaConverters._

scala> val df = spark.sqlContext.read.options(Map("kudu.master" -> "master1:port,master2:port,master3:port","kudu.table" -> "table")).kudu
df.registerTempTable("table");

spark.sql("select count(1) from table").show();

 

你可能感兴趣的:(AI,&,Big,Data案例实战课程)