ERC20:Ethereum Request for Comments 20,是一个基于以太坊代币的接口标准(协议)。所有符合ERC-20标准的代币都能立即兼容以太坊钱包,它能让用户和交易所,都能非常方便的管理多种代币,转账、存储、ICO等等。
OpenZeppelin的Token中实现了ERC20的一个安全的合约代码,本篇主要来分析一下源码,了解一下ERC20的实现,由于代码之间的调用可能略复杂,直接每个文件每个文件的来看会有点绕,我直接画了一个继承和调用关系的思维导图,可以帮助更容易地看源码。
ERC20Basic.sol
pragma solidity ^0.4.23;
contract ERC20Basic {
function totalSupply() public view returns (uint256);
function balanceOf(address who) public view returns (uint256);
function transfer(address to, uint256 value) public returns (bool);
event Transfer(address indexed from, address indexed to, uint256 value);
}
ERC20Basic合约主要定义了ERC20的基本接口,定义了必须要实现的方法:
- totalSupply 返回总共发行量
- balanceOf 查询指定address的余额
- transfer 发送指定数目的token到指定账户,同时发送后需要触发Transfer事件
Transfer
事件,任何token发送发生时,必须触发该事件,即使是0额度。 当一个token合约创建时,应该触发一个Transfer事件,token的发送方是0x0,也就是说凭空而来的token,简称空气币。
ERC20.sol
pragma solidity ^0.4.23;
import "./ERC20Basic.sol";
contract ERC20 is ERC20Basic {
function allowance(address owner, address spender)
public view returns (uint256);
function transferFrom(address from, address to, uint256 value)
public returns (bool);
function approve(address spender, uint256 value) public returns (bool);
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
ERC20合约继承了ERC20Basic,另外定义了approve相关的方法:
- allowance 获取指定用户的批准额度,控制代币的交易,如可交易账号及资产, 控制Token的流通
- transferFrom 从一个地址向另外一个地址转账指定额度的token,这个方法可以理解为一个收款流程,允许合约来代表token持有者发送代币。比如,合约可以帮助你向另外一个人发送token或者索要token。前提是token拥有者必须要通过某些机制对这个请求进行确认,比如通过MetaMask进行confirm。否则,执行将失败。 跟transfer一样,即使发送0代币,也要触发Transfer事件。
- approve 批准额度,允许一个账户最多能从你的账户你取现指定额度。重复调用时,以最后一次的额度为主。为了防止攻击,最开始这个额度必须设置为0。
Approval
事件,当approve被调用时,需要触发该事件。
DetailedERC20.sol
pragma solidity ^0.4.23;
import "./ERC20.sol";
contract DetailedERC20 is ERC20 {
string public name;
string public symbol;
uint8 public decimals;
constructor(string _name, string _symbol, uint8 _decimals) public {
name = _name;
symbol = _symbol;
decimals = _decimals;
}
}
DetailedERC20 主要定义了token的展示信息:
- name token的名称,比如"XXXToken"
- symbol token的符号,比如"XXX"
- decimals token精确的小数点位数,比如18
BasicToken.sol
pragma solidity ^0.4.23;
import "./ERC20Basic.sol";
import "../../math/SafeMath.sol";
/**
* @title 实现ERC20基本合约的接口
* @dev 基本的StandardToken,不包含allowances.
*/
contract BasicToken is ERC20Basic {
using SafeMath for uint256;
mapping(address => uint256) balances;
uint256 totalSupply_;
/**
* @dev 返回存在的token总数
*/
function totalSupply() public view returns (uint256) {
return totalSupply_;
}
/**
* @dev 给特定的address转token
* @param _to 要转账到的address
* @param _value 要转账的金额
*/
function transfer(address _to, uint256 _value) public returns (bool) {
//做相关的合法验证
require(_to != address(0));
require(_value <= balances[msg.sender]);
// msg.sender余额中减去额度,_to余额加上相应额度
balances[msg.sender] = balances[msg.sender].sub(_value);
balances[_to] = balances[_to].add(_value);
//触发Transfer事件
emit Transfer(msg.sender, _to, _value);
return true;
}
/**
* @dev 获取指定address的余额
* @param _owner 查询余额的address.
* @return An uint256 representing the amount owned by the passed address.
*/
function balanceOf(address _owner) public view returns (uint256) {
return balances[_owner];
}
}
通过SafeMath
来做运算很重要,在我们自己写合约的时候也尽量使用,可以避免一些计算过程的溢出等安全问题。
StandardToken.sol
pragma solidity ^0.4.23;
import "./BasicToken.sol";
import "./ERC20.sol";
/**
* @title 标准 ERC20 token
*
* @dev 实现基础的标准token
* @dev https://github.com/ethereum/EIPs/issues/20
* @dev Based on code by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
*/
contract StandardToken is ERC20, BasicToken {
mapping (address => mapping (address => uint256)) internal allowed;
/**
* @dev 从一个地址向另外一个地址转token
* @param _from 转账的from地址
* @param _to address 转账的to地址
* @param _value uint256 转账token数量
*/
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
returns (bool)
{
// 做合法性检查
require(_to != address(0));
require(_value <= balances[_from]);
require(_value <= allowed[_from][msg.sender]);
//_from余额减去相应的金额
//_to余额加上相应的金额
//msg.sender可以从账户_from中转出的数量减少_value
balances[_from] = balances[_from].sub(_value);
balances[_to] = balances[_to].add(_value);
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
// 触发Transfer事件
emit Transfer(_from, _to, _value);
return true;
}
/**
* @dev 批准传递的address以代表msg.sender花费指定数量的token
*
* Beware that changing an allowance with this method brings the risk that someone may use both the old
* and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this
* race condition is to first reduce the spender's allowance to 0 and set the desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* @param _spender 花费资金的地址
* @param _value 可以被花费的token数量
*/
function approve(address _spender, uint256 _value) public returns (bool) {
//记录msg.sender允许_spender动用的token
allowed[msg.sender][_spender] = _value;
//触发Approval事件
emit Approval(msg.sender, _spender, _value);
return true;
}
/**
* @dev 函数检查所有者允许的_spender花费的token数量
* @param _owner address 资金所有者地址.
* @param _spender address 花费资金的spender的地址.
* @return A uint256 指定_spender仍可用token的数量。
*/
function allowance(
address _owner,
address _spender
)
public
view
returns (uint256)
{
//允许_spender从_owner中转出的token数
return allowed[_owner][_spender];
}
/**
* @dev 增加所有者允许_spender花费代币的数量。
*
* allowed[_spender] == 0时approve应该被调用. 增加allowed值最好使用此函数避免2此调用(等待知道第一笔交易被挖出)
* From MonolithDAO Token.sol
* @param _spender 花费资金的地址
* @param _addedValue 用于增加允许动用的token牌数量
*/
function increaseApproval(
address _spender,
uint _addedValue
)
public
returns (bool)
{
//在之前允许的数量上增加_addedValue
allowed[msg.sender][_spender] = (
allowed[msg.sender][_spender].add(_addedValue));
//触发Approval事件
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
/**
* @dev 减少所有者允许_spender花费代币的数量
*
* allowed[_spender] == 0时approve应该被调用. 减少allowed值最好使用此函数避免2此调用(等待知道第一笔交易被挖出)
* From MonolithDAO Token.sol
* @param _spender 花费资金的地址
* @param _subtractedValue 用于减少允许动用的token牌数量
*/
function decreaseApproval(
address _spender,
uint _subtractedValue
)
public
returns (bool)
{
uint oldValue = allowed[msg.sender][_spender];
if (_subtractedValue > oldValue) {
//减少的数量少于之前允许的数量,则清零
allowed[msg.sender][_spender] = 0;
} else {
//减少对应的_subtractedValue数量
allowed[msg.sender][_spender] = oldValue.sub(_subtractedValue);
}
//触发Approval事件
emit Approval(msg.sender, _spender, allowed[msg.sender][_spender]);
return true;
}
}
上面合约定义的 mapping allowed
,它用来记录某个地址允许另外一个地址动用多少token。假设钱包地址为B,有另外一个合约其合约地址为C,合约C会通过支付XXX Token来做一些事情,根据ERC20的定义,每个地址只能操作属于自己的Token,则合约C无法直接使用B地址所拥有的Token,这时候allowed Mapping就派上用场了,它上面可以记录一个允许操作值,像是「B 钱包地址允许 C 合约地址动用属于 B 钱包地址的 1000 XXX Token」,以 Mapping 的结构来说标记为「B => C => 1000」
BurnableToken.sol
pragma solidity ^0.4.23;
import "./BasicToken.sol";
/**
* @title 可销毁 Token
* @dev Token可以被不可逆转地销毁
*/
contract BurnableToken is BasicToken {
event Burn(address indexed burner, uint256 value);
/**
* @dev 销毁指定数量的token.
* @param _value 被销毁的token数量.
*/
function burn(uint256 _value) public {
_burn(msg.sender, _value);
}
function _burn(address _who, uint256 _value) internal {
require(_value <= balances[_who]);
//不需要验证value <= totalSupply,因为这意味着发送者的余额大于总供应量,这应该是断言失败
balances[_who] = balances[_who].sub(_value);
totalSupply_ = totalSupply_.sub(_value);
emit Burn(_who, _value);
emit Transfer(_who, address(0), _value);
}
}
该合约比较简单,就是调用者可以销毁一定数量的token,然后totalSupply减去对应销毁的数量
StandardBurnableToken.sol
pragma solidity ^0.4.23;
import "./BurnableToken.sol";
import "./StandardToken.sol";
/**
* @title 标准可销毁token
* @dev 将burnFrom方法添加到ERC20实现中
*/
contract StandardBurnableToken is BurnableToken, StandardToken {
/**
* @dev 从目标地址销毁特定数量的token并减少允许量
* @param _from address token所有者地址
* @param _value uint256 被销毁的token数量
*/
function burnFrom(address _from, uint256 _value) public {
require(_value <= allowed[_from][msg.sender]);
// Should https://github.com/OpenZeppelin/zeppelin-solidity/issues/707 be accepted,
// 此方法需要触发具有更新批准的事件。
allowed[_from][msg.sender] = allowed[_from][msg.sender].sub(_value);
_burn(_from, _value);
}
}
MintableToken.sol
pragma solidity ^0.4.23;
import "./StandardToken.sol";
import "../../ownership/Ownable.sol";
/**
* @title 可增发 token
* @dev 简单的可增发的 ERC20 Token 示例
* @dev Issue: * https://github.com/OpenZeppelin/openzeppelin-solidity/issues/120
* Based on code by TokenMarketNet: https://github.com/TokenMarketNet/ico/blob/master/contracts/MintableToken.sol
*/
contract MintableToken is StandardToken, Ownable {
event Mint(address indexed to, uint256 amount);
event MintFinished();
//初始化增发状态为false
bool public mintingFinished = false;
modifier canMint() {
// 检查没有增发结束
require(!mintingFinished);
_;
}
modifier hasMintPermission() {
//owner只能为msg.sender
require(msg.sender == owner);
_;
}
/**
* @dev 增发token方法
* @param _to 获取增发token的地址_to.
* @param _amount 增发的token数量.
* @return A boolean that indicates if the operation was successful.
*/
function mint(
address _to,
uint256 _amount
)
hasMintPermission
canMint
public
returns (bool)
{
// 总发行量增加_amount数量的token
totalSupply_ = totalSupply_.add(_amount);
// 获取增发的地址增加_amount数量的token
balances[_to] = balances[_to].add(_amount);
// 触发增发事件
emit Mint(_to, _amount);
// 触发Transfer事件
emit Transfer(address(0), _to, _amount);
return true;
}
/**
* @dev 停止增发新token.
* @return True if the operation was successful.
*/
function finishMinting() onlyOwner canMint public returns (bool) {
// 改变增发状态为已完成
mintingFinished = true;
// 触发增发已完成事件
emit MintFinished();
return true;
}
}
增发token的合约也很简单,就是通过增发一定量的token给对应的address,并给总发行量增加对应的增发token,可以通过调用finishMinting
来完成增发。
CappedToken.sol
pragma solidity ^0.4.23;
import "./MintableToken.sol";
/**
* @title 上限 token
* @dev 设置一个顶的可增发token.
*/
contract CappedToken is MintableToken {
uint256 public cap;
constructor(uint256 _cap) public {
require(_cap > 0);
cap = _cap;
}
/**
* @dev 增发token
* @param _to 获取增发token的地址_to.
* @param _amount 增发token数量.
* @return A boolean that indicates if the operation was successful.
*/
function mint(
address _to,
uint256 _amount
)
public
returns (bool)
{
// 验证总发行量+增发量小于所设置的上限
require(totalSupply_.add(_amount) <= cap);
// 调用父合约的增发方法
return super.mint(_to, _amount);
}
}
CappedToken 也很简单,就是在可增发合约上加了一个"cap",来限制增发的上限
RBACMintableToken.sol
pragma solidity ^0.4.23;
import "./MintableToken.sol";
import "../../ownership/rbac/RBAC.sol";
/**
* @title RBACMintableToken
* @author Vittorio Minacori (@vittominacori)
* @dev Mintable Token, with RBAC minter permissions
*/
contract RBACMintableToken is MintableToken, RBAC {
/**
* 指定一个增发者的常量名.
*/
string public constant ROLE_MINTER = "minter";
/**
* @dev 重写Mintable token合约的 modifier,增加角色有关的逻辑
*/
modifier hasMintPermission() {
// 调用RBAC合约中的角色检查
checkRole(msg.sender, ROLE_MINTER);
_;
}
/**
* @dev 将一个地址添加为可增发者角色
* @param minter address
*/
function addMinter(address minter) onlyOwner public {
addRole(minter, ROLE_MINTER);
}
/**
* @dev 将一个地址移除可增发者角色
* @param minter address
*/
function removeMinter(address minter) onlyOwner public {
removeRole(minter, ROLE_MINTER);
}
}
RBACMintableToken 合约将增发操作中添加了RBAC逻辑,就是角色权限管理的逻辑,将一个地址这是为增发者角色,也可以移除一个地址的增发者角色,只有拥有"minter"角色的address才有权限增发token
SafeERC20.sol
pragma solidity ^0.4.23;
import "./ERC20Basic.sol";
import "./ERC20.sol";
/**
* @title SafeERC20
* @dev 围绕ERC20操作发生故障的包装程序.
* 可以在合约中通过这样使用这个库 `using SafeERC20 for ERC20;` 来使用安全的操作`token.safeTransfer(...)`
*/
library SafeERC20 {
function safeTransfer(ERC20Basic token, address to, uint256 value) internal {
require(token.transfer(to, value));
}
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 value
)
internal
{
require(token.transferFrom(from, to, value));
}
function safeApprove(ERC20 token, address spender, uint256 value) internal {
require(token.approve(spender, value));
}
}
SafeERC20 是一个ERC20的安全操作库,在下面的TokenTimelock
锁定期后释放token的合约中我们可以看到用法
TokenTimelock.sol
pragma solidity ^0.4.23;
import "./SafeERC20.sol";
/**
* @title TokenTimelock 锁定期释放token
* @dev TokenTimelock 是一个令token持有人合同,将允许一个受益人在给定的发布时间之后提取token
*/
contract TokenTimelock {
//这里用到了上面的SafeERC20
using SafeERC20 for ERC20Basic;
// ERC20 basic token contract being held
ERC20Basic public token;
// token被释放后的受益人address
address public beneficiary;
// token可以被释放的时间戳
uint256 public releaseTime;
// 对token,受益人address和释放时间初始化
constructor(
ERC20Basic _token,
address _beneficiary,
uint256 _releaseTime
)
public
{
require(_releaseTime > block.timestamp);
token = _token;
beneficiary = _beneficiary;
releaseTime = _releaseTime;
}
/**
* @notice 将时间限制内的token转移给受益人.
*/
function release() public {
require(block.timestamp >= releaseTime);
uint256 amount = token.balanceOf(this);
require(amount > 0);
token.safeTransfer(beneficiary, amount);
}
}
TokenTimelock 合约通过初始化受益人以及释放的时间和锁定的token,通过release
来将锁定期过后释放的token转给受益人
TokenVesting.sol
pragma solidity ^0.4.23;
import "./ERC20Basic.sol";
import "./SafeERC20.sol";
import "../../ownership/Ownable.sol";
import "../../math/SafeMath.sol";
/**
* @title TokenVesting 定期释放token
* @dev token持有人合同可以逐渐释放token余额典型的归属方案,有断崖时间和归属期, 可选择可撤销的所有者。
*/
contract TokenVesting is Ownable {
using SafeMath for uint256;
using SafeERC20 for ERC20Basic;
event Released(uint256 amount);
event Revoked();
// 释放后的token收益人
address public beneficiary;
uint256 public cliff; //断崖表示「锁仓4年,1年之后一次性解冻25%」中的一年
uint256 public start;//起始时间
uint256 public duration;//持续锁仓时间
bool public revocable;
mapping (address => uint256) public released;
mapping (address => bool) public revoked;
/**
* @dev 创建一份归属权合同,将任何ERC20 token的余额归属给_beneficiary,逐渐以线性方式,直到_start + _duration 所有的余额都将归属。
* @param _beneficiary 授予转让token的受益人的地址
* @param _cliff 持续时间以秒为单位,代币将开始归属
* @param _start 归属开始的时间(如Unix时间)
* @param _duration 持续时间以token的归属期限为单位
* @param _revocable 归属是否可撤销
*/
constructor(
address _beneficiary,
uint256 _start,
uint256 _cliff,
uint256 _duration,
bool _revocable
)
public
{
require(_beneficiary != address(0));
require(_cliff <= _duration);
beneficiary = _beneficiary;
revocable = _revocable;
duration = _duration;
cliff = _start.add(_cliff);
start = _start;
}
/**
* @notice 将归属代币转让给受益人.
* @param token ERC20 token which is being vested
*/
function release(ERC20Basic token) public {
uint256 unreleased = releasableAmount(token);
require(unreleased > 0);
released[token] = released[token].add(unreleased);
token.safeTransfer(beneficiary, unreleased);
emit Released(unreleased);
}
/**
* @notice允许所有者撤销归属。 token已经归属合约,其余归还给所有者。
* @param token ERC20 token which is being vested
*/
function revoke(ERC20Basic token) public onlyOwner {
require(revocable);
require(!revoked[token]);
uint256 balance = token.balanceOf(this);
uint256 unreleased = releasableAmount(token);
uint256 refund = balance.sub(unreleased);
revoked[token] = true;
token.safeTransfer(owner, refund);
emit Revoked();
}
/**
* @dev 计算已归属但尚未释放的金额。
* @param token ERC20 token which is being vested
*/
function releasableAmount(ERC20Basic token) public view returns (uint256) {
return vestedAmount(token).sub(released[token]);
}
/**
* @dev 计算已归属的金额.
* @param token ERC20 token which is being vested
*/
function vestedAmount(ERC20Basic token) public view returns (uint256) {
uint256 currentBalance = token.balanceOf(this);
uint256 totalBalance = currentBalance.add(released[token]);
if (block.timestamp < cliff) {
return 0;
} else if (block.timestamp >= start.add(duration) || revoked[token]) {
return totalBalance;
} else {
return totalBalance.mul(block.timestamp.sub(start)).div(duration);
}
}
}
TokenVesting也是锁仓的一种方式,主要解决的是有断崖时间和持续锁仓时间的锁仓场景
PausableToken.sol
pragma solidity ^0.4.23;
import "./StandardToken.sol";
import "../../lifecycle/Pausable.sol";
/**
* @title Pausable token
* @dev StandardToken modified with pausable transfers.
**/
contract PausableToken is StandardToken, Pausable {
function transfer(
address _to,
uint256 _value
)
public
whenNotPaused
returns (bool)
{
return super.transfer(_to, _value);
}
function transferFrom(
address _from,
address _to,
uint256 _value
)
public
whenNotPaused
returns (bool)
{
return super.transferFrom(_from, _to, _value);
}
function approve(
address _spender,
uint256 _value
)
public
whenNotPaused
returns (bool)
{
return super.approve(_spender, _value);
}
function increaseApproval(
address _spender,
uint _addedValue
)
public
whenNotPaused
returns (bool success)
{
return super.increaseApproval(_spender, _addedValue);
}
function decreaseApproval(
address _spender,
uint _subtractedValue
)
public
whenNotPaused
returns (bool success)
{
return super.decreaseApproval(_spender, _subtractedValue);
}
}
PausableToken继承了StandardToken,但是在方法中都添加了whenNotPaused
函数修改器,whenNotPaused继承自Pausable合约,Pausable有个paused来标记暂停的状态,从而控制合约的是否暂停。
OpenZeppelin ERC20源码分析到这里就结束了。
转载请注明: 转载自Ryan是菜鸟 | LNMP技术栈笔记
如果觉得本篇文章对您十分有益,何不 打赏一下
本文链接地址: OpenZeppelin ERC20源码分析