TensorFlow实战——CNN(Inception-v3)

 

 

本文:http://blog.csdn.net/u011239443/article/details/73008131

TensorFlow实战——CNN(Inception-v3)_第1张图片
我们之前介绍的神经网络层与层之间都是一对一的,而Inception-v3模型存在一对多和多对一。

  • 一对多:用不同或者相同的过滤器过滤出多个层
  • 多对一:将多层合并,即深度会相加。

tensorflow github 中有Inception-v3模型的实现:https://github.com/tensorflow/tensorflow/blob/fc1567c78b3746b44aa50373489a767afbb95d2b/tensorflow/contrib/slim/python/slim/nets/inception_v3.py

由于大部分代码雷同,所以我们就讲解最后一个Mixed的代码:

TensorFlow实战——CNN(Inception-v3)_第2张图片

首先我们来介绍下一个可以来帮我们创建卷积神经网络层的工具:layers.conv2d。它可以很简洁的帮我们创建卷积神经网络卷积层,它本质是convolution函数,我们可以看下convolution函数:

def convolution(inputs,
                num_outputs,
                kernel_size,
                stride=1,
                padding='SAME',
                data_format=None,
                rate=1,
                activation_fn=nn.relu,
                normalizer_fn=None,
                normalizer_params=None,
                weights_initializer=initializers.xavier_initializer(),
                weights_regularizer=None,
                biases_initializer=init_ops.zeros_initializer(),
                biases_regularizer=None,
                reuse=None,
                variables_collections=None,
                outputs_collections=None,
                trainable=True,
                scope=None):

  """
  Args:
    inputs: a Tensor of rank N+2 of shape
      `[batch_size] + input_spatial_shape + [in_channels]` if data_format does
      not start with "NC" (default), or
      `[batch_size, in_channels] + input_spatial_shape` if data_format starts
      with "NC".
    num_outputs: integer, the number of output filters.
    kernel_size: a sequence of N positive integers specifying the spatial
      dimensions of of the filters.  Can be a single integer to specify the same
      value for all spatial dimensions.
    stride: a sequence of N positive integers specifying the stride at which to
     ......
    scope: Optional scope for `variable_scope`.
'''
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35

我们可以看到参数:

  • inputs:输入数据
  • num_outputs:输出深度
  • kernel_size:窗口尺寸
  • stride=1:步长,默认为1
  • padding=’SAME’:是否填充0,默认填充

接下来我们来看下这部分的代码:

  • Branch_0:

这里写图片描述

net,用深度为320,1×1的过滤器,过滤出branch_0

      end_point = 'Mixed_7b'
      with variable_scope.variable_scope(end_point):
        with variable_scope.variable_scope('Branch_0'):
          branch_0 = layers.conv2d(
              net, depth(320), [1, 1], scope='Conv2d_0a_1x1')
  • 1
  • 2
  • 3
  • 4
  • 5
  • Branch_1:

这里写图片描述

先从net,用深度为384,1×1的过滤器,过滤出branch_1
再从branch_1,分别用一个深度为384,1×3的过滤器和深度为384,3×1的过滤器,过滤出两层。
最后,将这两层合并,赋值给branch_1concat中参数3,代表在是在第三个维度,即深度上,对两者进行合并。

        with variable_scope.variable_scope('Branch_1'):
          branch_1 = layers.conv2d(
              net, depth(384), [1, 1], scope='Conv2d_0a_1x1')
          branch_1 = array_ops.concat(
              [
                  layers.conv2d(
                      branch_1, depth(384), [1, 3], scope='Conv2d_0b_1x3'),
                  layers.conv2d(
                      branch_1, depth(384), [3, 1], scope='Conv2d_0b_3x1')
              ],
              3)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • Branch_2 & Branch_3

TensorFlow实战——CNN(Inception-v3)_第3张图片

前面两个操作类似,可以参考图片自己理解代码:

        with variable_scope.variable_scope('Branch_2'):
          branch_2 = layers.conv2d(
              net, depth(448), [1, 1], scope='Conv2d_0a_1x1')
          branch_2 = layers.conv2d(
              branch_2, depth(384), [3, 3], scope='Conv2d_0b_3x3')
          branch_2 = array_ops.concat(
              [
                  layers.conv2d(
                      branch_2, depth(384), [1, 3], scope='Conv2d_0c_1x3'),
                  layers.conv2d(
                      branch_2, depth(384), [3, 1], scope='Conv2d_0d_3x1')
              ],
              3)
        with variable_scope.variable_scope('Branch_3'):
          branch_3 = layers_lib.avg_pool2d(net, [3, 3], scope='AvgPool_0a_3x3')
          branch_3 = layers.conv2d(
              branch_3, depth(192), [1, 1], scope='Conv2d_0b_1x1')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

最后,将branch_0, branch_1, branch_2, branch_3进行合并:

        net = array_ops.concat([branch_0, branch_1, branch_2, branch_3], 3)
      end_points[end_point] = net
      if end_point == final_endpoint:
return net, end_points

你可能感兴趣的:(神经网络,TensorFlow学习)