CompletableFuture类实现了CompletionStage和Future接口。Future是Java 5添加的类,用来描述一个异步计算的结果,但是获取一个结果时方法较少,要么通过轮询isDone,确认完成后,调用get()获取值,要么调用get()设置一个超时时间。但是这个get()方法会阻塞住调用线程,这种阻塞的方式显然和我们的异步编程的初衷相违背。
为了解决这个问题,JDK吸收了guava的设计思想,加入了Future的诸多扩展功能形成了CompletableFuture。
CompletionStage是一个接口,从命名上看得知是一个完成的阶段,它里面的方法也标明是在某个运行阶段得到了结果之后要做的事情。
public CompletionStage thenApply(Function super T,? extends U> fn);
public CompletionStage thenApplyAsync(Function super T,? extends U> fn);
public CompletionStage thenApplyAsync(Function super T,? extends U> fn,Executor executor);
首先说明一下已Async结尾的方法都是可以异步执行的,如果指定了线程池,会在指定的线程池中执行,如果没有指定,默认会在ForkJoinPool.commonPool()中执行,下文中将会有好多类似的,都不详细解释了。关键的入参只有一个Function,它是函数式接口,所以使用Lambda表示起来会更加优雅。它的入参是上一个阶段计算后的结果,返回值是经过转化后结果。
例如:
@Test
public void thenApply() {
String result = CompletableFuture.supplyAsync(() -> "hello").thenApply(s -> s + " world").join();
System.out.println(result);
}
结果为:
hello world
public CompletionStage thenAccept(Consumer super T> action) ;
public CompletionStage thenAcceptAsync(Consumer super T> action) ;
public CompletionStage thenAcceptAsync(Consumer super T> action,Executor executor) ;
thenAccept是针对结果进行消耗,因为他的入参是Consumer,有入参无返回值。
例如:
@Test
public void thenAccept(){
CompletableFuture.supplyAsync(() -> "hello").thenAccept(s -> System.out.println(s+" world"));
}
结果为:
hello world
public CompletionStage thenRun(Runnable action) ;
public CompletionStage thenRunAsync(Runnable action) ;
public CompletionStage thenRunAsync(Runnable action,Executor executor) ;
thenRun它的入参是一个Runnable的实例,表示当得到上一步的结果时的操作。
例如:
@Test
public void thenRun(){
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenRun(() -> System.out.println("hello world"));
while (true){}
}
结果为:
hello world
4.结合两个CompletionStage的结果,进行转化后返回
public CompletionStage thenCombine(CompletionStage extends U> other,BiFunction super T,? super U,? extends V> fn) ;
public CompletionStage thenCombineAsync(CompletionStage extends U> other,BiFunction super T,? super U,? extends V> fn) ;
public CompletionStage thenCombineAsync(CompletionStage extends U> other,BiFunction super T,? super U,? extends V> fn,Executor executor) ;
它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行转换后返回指定类型的值。
例如:
@Test
public void thenCombine() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenCombine(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "world";
}), (s1, s2) -> s1 + " " + s2).join();
System.out.println(result);
}
结果为:
hello world
public CompletionStage thenAcceptBoth(CompletionStage extends U> other,BiConsumer super T, ? super U> action) ;
public CompletionStage thenAcceptBothAsync(CompletionStage extends U> other,BiConsumer super T, ? super U> action) ;
public CompletionStage thenAcceptBothAsync(CompletionStage extends U> other,BiConsumer super T, ? super U> action, Executor executor) ;
它需要原来的处理返回值,并且other代表的CompletionStage也要返回值之后,利用这两个返回值,进行消耗。
例如:
@Test
public void thenAcceptBoth() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello";
}).thenAcceptBoth(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "world";
}), (s1, s2) -> System.out.println(s1 + " " + s2));
while (true){}
}
结果为:
hello world
public CompletionStage<Void> runAfterBoth(CompletionStage> other,Runnable action);
public CompletionStage runAfterBothAsync(CompletionStage> other,Runnable action);
public CompletionStage<Void> runAfterBothAsync(CompletionStage> other,Runnable action,Executor executor);
不关心这两个CompletionStage的结果,只关心这两个CompletionStage执行完毕,之后在进行操作(Runnable)。
例如:
@Test
public void runAfterBoth(){
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).runAfterBothAsync(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s2";
}), () -> System.out.println("hello world"));
while (true){}
}
结果为
hello world
6.两个CompletionStage,谁计算的快,我就用那个CompletionStage的结果进行下一步的转化操作。
public <U> CompletionStage<U> applyToEither(CompletionStage extends T> other,Function super T, U> fn);
public CompletionStage applyToEitherAsync(CompletionStage extends T> other,Function super T, U> fn);
public CompletionStage applyToEitherAsync(CompletionStage extends T> other,Function super T, U> fn,Executor executor);
我们现实开发场景中,总会碰到有两种渠道完成同一个事情,所以就可以调用这个方法,找一个最快的结果进行处理。
例如:
@Test
public void applyToEither() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).applyToEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello world";
}), s -> s).join();
System.out.println(result);
}
结果为:
hello world
public CompletionStage acceptEither(CompletionStage extends T> other,Consumer super T> action) ;
public CompletionStage acceptEitherAsync(CompletionStage extends T> other,Consumer super T> action) ;
public CompletionStage acceptEitherAsync(CompletionStage extends T> other,Consumer super T> action,Executor executor) ;
例如:
@Test
public void acceptEither() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).acceptEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "hello world";
}), System.out::println);
while (true){}
}
结果为:
hello world
public CompletionStage<Void> runAfterEither(CompletionStage> other,Runnable action);
public CompletionStage runAfterEitherAsync(CompletionStage> other,Runnable action);
public CompletionStage<Void> runAfterEitherAsync(CompletionStage> other,Runnable action,Executor executor);
例如:
@Test
public void runAfterEither() {
CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).runAfterEither(CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(2000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s2";
}), () -> System.out.println("hello world"));
while (true) {
}
}
结果为:
hello world
public CompletionStage exceptionally(Function<Throwable, ? extends T> fn);
例如:
@Test
public void exceptionally() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).exceptionally(e -> {
System.out.println(e.getMessage());
return "hello world";
}).join();
System.out.println(result);
}
结果为:
java.lang.RuntimeException: 测试一下异常情况
hello world
public CompletionStage whenComplete(BiConsumer super T, ? super Throwable> action) ;
public CompletionStage whenCompleteAsync(BiConsumer super T, ? super Throwable> action) ;
public CompletionStage whenCompleteAsync(BiConsumer super T, ? super Throwable> action,Executor executor) ;
例如:
@Test
public void whenComplete() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).whenComplete((s, t) -> {
System.out.println(s);
System.out.println(t.getMessage());
}).exceptionally(e -> {
System.out.println(e.getMessage());
return "hello world";
}).join();
System.out.println(result);
}
结果为:
null
java.lang.RuntimeException: 测试一下异常情况
java.lang.RuntimeException: 测试一下异常情况
hello world
这里也可以看出,如果使用了exceptionally,就会对最终的结果产生影响,它没有口子返回如果没有异常时的正确的值,这也就引出下面我们要介绍的handle。
public CompletionStage handle(BiFunction super T, Throwable, ? extends U> fn);
public CompletionStage handleAsync(BiFunction super T, Throwable, ? extends U> fn);
public CompletionStage handleAsync(BiFunction super T, Throwable, ? extends U> fn,Executor executor);
例如:
出现异常时
@Test
public void handle() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
//出现异常
if (1 == 1) {
throw new RuntimeException("测试一下异常情况");
}
return "s1";
}).handle((s, t) -> {
if (t != null) {
return "hello world";
}
return s;
}).join();
System.out.println(result);
}
结果为:
hello world
未出现异常时
@Test
public void handle() {
String result = CompletableFuture.supplyAsync(() -> {
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "s1";
}).handle((s, t) -> {
if (t != null) {
return "hello world";
}
return s;
}).join();
System.out.println(result);
}
结果为:
s1
上面就是CompletionStage接口中方法的使用实例,CompletableFuture同样也同样实现了Future,所以也同样可以使用get进行阻塞获取值,总的来说,CompletableFuture使用起来还是比较爽的,看起来也比较优雅一点。
链接:https://www.jianshu.com/p/6f3ee90ab7d3
后记:
CompletableFuture对象调用thenCompose 方法,CompletableFuture对象调用了并向其
传递了第二个CompletableFuture,而第二个CompletableFuture又需要使用第一个
CompletableFuture的执行结果作为输入。但是,另一种比较常见的情况是,你需要将两个完
全不相干的CompletableFuture对象的结果整合起来,而且你也不希望等到第一个任务完全结
束才开始第二项任务。
这种情况,你应该使用thenCombine 方法,它接收名为BiFunction的第二参数,这个参数
定义了当两个CompletableFuture对象完成计算后,结果如何合并。同thenCompose 方法一样,
thenCombine 方法也提供有一个Async的版本。这里,如果使用thenCombineAsync 会导致
BiFunction中定义的合并操作被提交到线程池中,由另一个任务以异步的方式执行。