CatBoost

文章目录

  • 1.CatBoost是什么?
  • 2.CatBoost有哪些优点?
  • 3.CatBoost实例展示
  • 4.参考

1.CatBoost是什么?

CatBoost是俄罗斯的搜索巨头Yandex在2017年开源的机器学习库,是Gradient Boosting(梯度提升) + Categorical Features(类别型特征),也是基于梯度提升决策树的机器学习框架。一个超级简单并且又极其实用的boosting算法包Catboost,据开发者所说这一boosting算法是超越Lightgbm和XGBoost的又一个神器。

针对 GBDT 算法,在学术界和工业界有许多开源的算法包。著名的包括 University of Washington 的陈天奇开发的 XGBoost ,微软的 LightGBM ,还有 Yandex 公司开发的 CatBoost 。XGBoost 被广泛的应用于工业界,LightGBM 有效的提升了 GBDT的计算效率, 而 Yandex 的 CatBoost 号称是比 XGBoost 和 LightGBM 在算法准确率等方面表现更为优秀的算法。

先来回顾下我们常用的几种集成学习方法
CatBoost_第1张图片

2.CatBoost有哪些优点?

1,类别型特征的处理
CatBoost采用了一种有效的策略,降低过拟合的同时也保证了全部数据集都可用于学习。也就是对数据集进行随机排列,计算相同类别值的样本的平均标签值时,只是将这个样本之前的样本的标签值纳入计算。

2,特征组合
为当前树构造新的分割点时,CatBoost会采用贪婪的策略考虑组合。对于树的第一次分割,不考虑任何组合。对于下一个分割,CatBoost将当前树的所有组合、类别型特征与数据集中的所有类别型特征相结合。组合被动态地转换为数字。CatBoost还通过以下方式生成数值型特征和类别型特征的组合:树选择的所有分割点都被视为具有两个值的类别型特征,并且组合方式和类别型特征一样。

3,克服梯度偏差
CatBoost,和所有标准梯度提升算法一样,都是通过构建新树来拟合当前模型的梯度。然而,所有经典的提升算法都存在由有偏的点态梯度估计引起的过拟合问题。许多利用GBDT技术的算法(例如,XGBoost、LightGBM),构建一棵树分为两个阶段:选择树结构和在树结构固定后计算叶子节点的值。为了选择最佳的树结构,算法通过枚举不同的分割,用这些分割构建树,对得到的叶子节点中计算值,然后对得到的树计算评分,最后选择最佳的分割。两个阶段叶子节点的值都是被当做梯度[8]或牛顿步长的近似值来计算。CatBoost第一阶段采用梯度步长的无偏估计,第二阶段使用传统的GBDT方案执行。

4,快速评分
CatBoost使用oblivious树作为基本预测器,这种树是平衡的,不太容易过拟合。oblivious树中,每个叶子节点的索引可以被编码为长度等于树深度的二进制向量。CatBoost首先将所有浮点特征、统计信息和独热编码特征进行二值化,然后使用二进制特征来计算模型预测值。

5,基于GPU实现快速学习

5.1 密集的数值特征
任何GBDT算法,对于密集的数值特征数据集来说,搜索最佳分割是建立决策树时的主要计算负担。CatBoost利用oblivious决策树作为基础模型,并将特征离散化到固定数量的箱子中以减少内存使用。就GPU内存使用而言,CatBoost至少与LightGBM一样有效。主要改进之处就是利用了一种不依赖于原子操作的直方图计算方法。

5.2 类别型特征
CatBoost使用完美哈希来存储类别特征的值,以减少内存使用。由于GPU内存的限制,在CPU RAM中存储按位压缩的完美哈希,以及要求的数据流、重叠计算和内存等操作。通过哈希来分组观察。在每个组中,我们需要计算一些统计量的前缀和。该统计量的计算使用分段扫描GPU图元实现。

5.3 多GPU支持
CatBoost中的GPU实现可支持多个GPU。分布式树学习可以通过数据或特征进行并行化。CatBoost采用多个学习数据集排列的计算方案,在训练期间计算分类特征的统计数据。

可以简要总结为以下几点:

  • 性能卓越:在性能方面可以匹敌任何先进的机器学习算法;
  • 鲁棒性/强健性:它减少了对很多超参数调优的需求,并降低了过度拟合的机会,这也使得模型变得更加具有通用性;
  • 易于使用:提供与scikit集成的Python接口,以及R和命令行界面;
  • 实用:可以处理类别型、数值型特征;可扩展:支持自定义损失函数;

3.CatBoost实例展示

如果按照正常的算法,对于一些非数值型特征(类别型特征),应该通过各种数据预处理手段,各种编码方式转化为数值型特征。而在catboost中你根本不用费心干这些,你只需要告诉算法,哪些特征属于类别特征,它会自动帮你处理。代码如下所示:

categorical_features_indices = np.where(X_train.dtypes != np.float)[0]
model = CatBoostClassifier(iterations=100, depth=5,cat_features=categorical_features_indices,learning_rate=0.5, loss_function='Logloss',
                            logging_level='Verbose')

然后将数据进行训练,通过plot = True,还可以将损失函数可视化。

model.fit(X_train,y_train,eval_set=(X_validation, y_validation),plot=True)

训练结束后,通过model.feature_importances_属性,我们可以拿到这些特征的重要程度数据,特征的重要性程度可以帮助我们分析出一些有用的信息。

import matplotlib.pyplot as plt 
fea_ = model.feature_importances_
fea_name = model.feature_names_
plt.figure(figsize=(10, 10))
plt.barh(fea_name,fea_,height =0.5)

4.参考

https://www.jianshu.com/p/6d6adb164eaf
https://www.jianshu.com/p/49ab87122562

你可能感兴趣的:(机器学习)